{"title":"Expression of Concern.","authors":"","doi":"10.33594/000000708","DOIUrl":"10.33594/000000708","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 3","pages":"288"},"PeriodicalIF":2.5,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern.","authors":"","doi":"10.33594/000000709","DOIUrl":"10.33594/000000709","url":null,"abstract":"","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 3","pages":"289"},"PeriodicalIF":2.5,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Elena Zaaba, Sumaya Beegam, Ozaz Elzaki, Mohammad Albastaki, Majed Alhammadi, Abdallah Alsaadi, Abderrahim Nemmar
{"title":"Cardiotoxicity Induced by Intratracheal Instillation of Diesel Exhaust Particles in Mice, and the Protective Effects of Carnosol: Suppression of Inflammation and Oxidative and Nitrosative Stress via Modulation of NF-κb/MAPKs Signaling Pathways.","authors":"Nur Elena Zaaba, Sumaya Beegam, Ozaz Elzaki, Mohammad Albastaki, Majed Alhammadi, Abdallah Alsaadi, Abderrahim Nemmar","doi":"10.33594/000000707","DOIUrl":"10.33594/000000707","url":null,"abstract":"<p><strong>Background/aims: </strong>Inhaled particulate air pollution is associated with cardiotoxicity with underlying mechanisms including oxidative stress and inflammation. Carnosol, commonly found in rosemary and sage, is known to possess a broad range of therapeutic properties such as antioxidant, anti-inflammatory and antiapoptotic. However, its cardioprotective effects on diesel exhaust particles (DEPs)-induced toxicity have not been studied yet. Hence, we evaluated the potential ameliorative effects of carnosol on DEPs-induced heart toxicity in mice, and the underlying mechanisms involved.</p><p><strong>Methods: </strong>Mice were intratracheally instilled with DEPs (1 mg/kg) or saline, and 1 hour prior to instillation they were given intraperitoneally either carnosol (20 mg/kg) or saline. Twenty-four hours after the DEPs instillation, multiple parameters were evaluated in the heart by enzyme-linked immunosorbent assay, colorimetric assay, Comet assay and Western blot technique.</p><p><strong>Results: </strong>Carnosol has significantly reduced the elevation in the plasma levels of lactate hydrogenase and brain natriuretic peptide induced by DEPs. Likewise, the augmented cardiac levels of proinflammatory cytokines, lipid peroxidation, and total nitric oxide in DEPs-treated groups were significantly normalized with the treatment of carnosol. Moreover, carnosol has markedly reduced the heart mitochondrial dysfunction, as well as DNA damage and apoptosis of mice treated with DEPs. Similarly, carnosol significantly reduced the elevated expressions of phosphorylated nuclear factor-кB (NF-кB) and mitogen-activated protein kinases (MAPKs) in the hearts. Furthermore, the treatment with carnosol has restored the decrease in the expression of sirtuin-1 in the hearts of mice exposed to DEPs.</p><p><strong>Conclusion: </strong>Carnosol significantly attenuated DEP-induced cardiotoxicity in mice by suppressing inflammation, oxidative stress, DNA damage, and apoptosis, at least partly via mechanisms involving sirtuin-1 activation and the inhibition of NF-кB and MAPKs activation.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 3","pages":"273-287"},"PeriodicalIF":2.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curbing Breast Cancer by Altering V-ATPase Action on F-Actin, Heterochromatin, ETV7 and mTORC2 Signaling.","authors":"Zeina S Khan, Fazle Hussain","doi":"10.33594/000000706","DOIUrl":"10.33594/000000706","url":null,"abstract":"<p><strong>Background/aims: </strong>Motivated by the vacuolar proton pump's importance in cancer, we investigate the effects of proton pump inhibition on breast cancer cell migration and proliferation, F-actin polymerization, lamin A/C, heterochromatin, and ETV7 expressions, nuclear size and shape, and AKT/mTOR signaling.</p><p><strong>Methods: </strong>Lowly metastatic MCF7 and highly metastatic MDA-MB-231 breast cancer cells were treated with 120 nM of proton pump inhibitor Bafilomycin A1 for 24 hours. Cell migration was studied with wound- scratch assays, ATP levels with a chemiluminescent assay; cell proliferation was quantified by a cell area expansion assay. Nuclear size and shape were determined using DAPI nuclear stain and fluorescence microscopy. The levels of F-actin, lamin A/C, heterochromatin, and ETV7 were quantified using both immunocytochemistry and western blots; p-mTORC1, p-mTORC2, mTOR, p-AKT, and AKT were measured by western blots.</p><p><strong>Results: </strong>We reveal that proton pump inhibition reduces F-actin polymerization, cell migration, proliferation, and increases heterochromatin in both lowly and highly metastatic cells. Surprisingly, Bafilomycin decreases lamin A/C in both cell lines. Inhibition has different effects on ETV7 expression in lowly and highly metastatic cells, as well as nuclear area, perimeter, and circularity. Bafilomycin also significantly decreases p-mTORC1, p-MTORC2, and MTOR expression in both cell lines, whereas it significantly decreases p-AKT in lowly metastatic cells and surprisingly significantly increases p-AKT in highly metastatic cells. Our proton pump inhibition protocol reduces V-ATPase levels (~25%) within three hours. V-ATPase levels vary in time for both control and inhibited cells, and inhibition reduces cellular ATP.</p><p><strong>Conclusion: </strong>Proton pumps promote F-actin polymerization and decrease heterochromatin, facilitating invasion. These pumps also upregulate both mTORC1 and mTORC2, thus highlighting the relevance of vacuolar proton pumps as metastatic cancer targets.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 3","pages":"250-272"},"PeriodicalIF":2.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia Kurhaluk, Oleksandr Lukash, Piotr Kamiński, Halina Tkaczenko
{"title":"Adaptive Effects of Intermittent Hypoxia Training on Oxygen-Dependent Processes as a Potential Therapeutic Strategy Tool.","authors":"Natalia Kurhaluk, Oleksandr Lukash, Piotr Kamiński, Halina Tkaczenko","doi":"10.33594/000000705","DOIUrl":"https://doi.org/10.33594/000000705","url":null,"abstract":"<p><strong>Background/aims: </strong>Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session.</p><p><strong>Methods: </strong>We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation.</p><p><strong>Results: </strong>The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment.</p><p><strong>Conclusion: </strong>Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 3","pages":"226-249"},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}