Ph值对木薯皮淀粉生物聚合物理化性质的影响。

IF 2.5 Q3 CELL BIOLOGY
Lisbeth Anchundia, Felipe Jadán Piedra, José Alejandro Macías Alcívar, Virginia Sánchez Mendoza, Danny Isaías Vera Guerrero, Sonia Nathaly Giler Intriago, Wagner Antonio Gorozabel Muñoz, Grether Lucía Real Pérez, Ricardo Loor Alava, Odalis Barzallo Delgado, Carlos Jadán Piedra
{"title":"Ph值对木薯皮淀粉生物聚合物理化性质的影响。","authors":"Lisbeth Anchundia, Felipe Jadán Piedra, José Alejandro Macías Alcívar, Virginia Sánchez Mendoza, Danny Isaías Vera Guerrero, Sonia Nathaly Giler Intriago, Wagner Antonio Gorozabel Muñoz, Grether Lucía Real Pérez, Ricardo Loor Alava, Odalis Barzallo Delgado, Carlos Jadán Piedra","doi":"10.33594/000000753","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels. Understanding these effects is critical for increasing the acceptability of cassava peel starch biopolymers in a variety of industrial applications, notably environmentally friendly packaging solutions.</p><p><strong>Methods: </strong>Starch extracted from cassava peel was used to produce films using the casting method at specified pH levels. The films were evaluated for thickness and density using classical methods. Moisture content was determined following the AOAC 930.15 (2000) protocol. Color analysis was conducted using the CIELab color space technique. Water solubility and solubility in acidic (HCl) and alkaline (NaOH) solutions were assessed through chemical solubility tests performed by gravimetry.</p><p><strong>Results: </strong>The study investigated how pH impacts biopolymer films manufactured from cassava peel starch. The film thickness varied greatly across pH levels, with pH 10.5 creating the thickest films (0.158 ± 0.012 mm) and pH 6.5 providing the thinnest (0.118 ± 0.015 mm). Density varied slightly, from 1.393 ± 0.122 g/cc to 1.551 ± 0.153 g/cc. Moisture content fluctuated significantly, affecting biodegradability. Color study indicated pH-dependent variations in transparency and opacity, with higher pH values resulting in larger color deviations (∆E). Water solubility remained constant, but NaOH solubility dropped with increasing pH, peaking at pH 7.5 (23.44 ± 2.82%).</p><p><strong>Conclusion: </strong>This work investigates the use of cassava peel starch for biopolymer synthesis at controlled pH levels. The findings demonstrate the material's practicality and provide critical insights for enhancing film qualities, particularly in a variety of industrial applications and environmentally friendly packaging solutions.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 1","pages":"21-33"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.\",\"authors\":\"Lisbeth Anchundia, Felipe Jadán Piedra, José Alejandro Macías Alcívar, Virginia Sánchez Mendoza, Danny Isaías Vera Guerrero, Sonia Nathaly Giler Intriago, Wagner Antonio Gorozabel Muñoz, Grether Lucía Real Pérez, Ricardo Loor Alava, Odalis Barzallo Delgado, Carlos Jadán Piedra\",\"doi\":\"10.33594/000000753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels. Understanding these effects is critical for increasing the acceptability of cassava peel starch biopolymers in a variety of industrial applications, notably environmentally friendly packaging solutions.</p><p><strong>Methods: </strong>Starch extracted from cassava peel was used to produce films using the casting method at specified pH levels. The films were evaluated for thickness and density using classical methods. Moisture content was determined following the AOAC 930.15 (2000) protocol. Color analysis was conducted using the CIELab color space technique. Water solubility and solubility in acidic (HCl) and alkaline (NaOH) solutions were assessed through chemical solubility tests performed by gravimetry.</p><p><strong>Results: </strong>The study investigated how pH impacts biopolymer films manufactured from cassava peel starch. The film thickness varied greatly across pH levels, with pH 10.5 creating the thickest films (0.158 ± 0.012 mm) and pH 6.5 providing the thinnest (0.118 ± 0.015 mm). Density varied slightly, from 1.393 ± 0.122 g/cc to 1.551 ± 0.153 g/cc. Moisture content fluctuated significantly, affecting biodegradability. Color study indicated pH-dependent variations in transparency and opacity, with higher pH values resulting in larger color deviations (∆E). Water solubility remained constant, but NaOH solubility dropped with increasing pH, peaking at pH 7.5 (23.44 ± 2.82%).</p><p><strong>Conclusion: </strong>This work investigates the use of cassava peel starch for biopolymer synthesis at controlled pH levels. The findings demonstrate the material's practicality and provide critical insights for enhancing film qualities, particularly in a variety of industrial applications and environmentally friendly packaging solutions.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"59 1\",\"pages\":\"21-33\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:本研究探讨了pH值对木薯皮淀粉制备的生物聚合物薄膜特性的影响。木薯皮淀粉的丰度和可生物降解性使其成为可持续包装的有希望的候选者。该研究试图通过改变pH值来改善薄膜的质量,如厚度、密度、含水量、溶解度和光学性能。了解这些影响对于提高木薯皮淀粉生物聚合物在各种工业应用中的可接受性至关重要,特别是环保包装解决方案。方法:以木薯皮中提取的淀粉为原料,在一定的pH值条件下,采用浇铸法制备薄膜。用经典方法对膜的厚度和密度进行了评价。水分含量按照AOAC 930.15(2000)方案测定。采用CIELab色彩空间技术进行色彩分析。通过重量法进行化学溶解度测试,评估了水溶性和在酸性(HCl)和碱性(NaOH)溶液中的溶解度。结果:研究了pH值对木薯皮淀粉制备的生物聚合物薄膜的影响。在不同的pH值下,膜的厚度变化很大,pH值为10.5的膜最厚(0.158±0.012 mm), pH值为6.5的膜最薄(0.118±0.015 mm)。密度变化不大,从1.393±0.122 g/cc到1.551±0.153 g/cc。水分含量波动较大,影响生物降解性。颜色研究表明,透明度和不透明度的变化与pH值有关,pH值越高,颜色偏差越大(∆E)。水溶液溶解度保持不变,但NaOH溶解度随pH升高而下降,在pH 7.5时达到峰值(23.44±2.82%)。结论:本文研究了木薯皮淀粉在控制pH水平下用于生物聚合物的合成。研究结果证明了材料的实用性,并为提高薄膜质量提供了重要的见解,特别是在各种工业应用和环保包装解决方案中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.

Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels. Understanding these effects is critical for increasing the acceptability of cassava peel starch biopolymers in a variety of industrial applications, notably environmentally friendly packaging solutions.

Methods: Starch extracted from cassava peel was used to produce films using the casting method at specified pH levels. The films were evaluated for thickness and density using classical methods. Moisture content was determined following the AOAC 930.15 (2000) protocol. Color analysis was conducted using the CIELab color space technique. Water solubility and solubility in acidic (HCl) and alkaline (NaOH) solutions were assessed through chemical solubility tests performed by gravimetry.

Results: The study investigated how pH impacts biopolymer films manufactured from cassava peel starch. The film thickness varied greatly across pH levels, with pH 10.5 creating the thickest films (0.158 ± 0.012 mm) and pH 6.5 providing the thinnest (0.118 ± 0.015 mm). Density varied slightly, from 1.393 ± 0.122 g/cc to 1.551 ± 0.153 g/cc. Moisture content fluctuated significantly, affecting biodegradability. Color study indicated pH-dependent variations in transparency and opacity, with higher pH values resulting in larger color deviations (∆E). Water solubility remained constant, but NaOH solubility dropped with increasing pH, peaking at pH 7.5 (23.44 ± 2.82%).

Conclusion: This work investigates the use of cassava peel starch for biopolymer synthesis at controlled pH levels. The findings demonstrate the material's practicality and provide critical insights for enhancing film qualities, particularly in a variety of industrial applications and environmentally friendly packaging solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信