Lisbeth Anchundia, Felipe Jadán Piedra, José Alejandro Macías Alcívar, Virginia Sánchez Mendoza, Danny Isaías Vera Guerrero, Sonia Nathaly Giler Intriago, Wagner Antonio Gorozabel Muñoz, Grether Lucía Real Pérez, Ricardo Loor Alava, Odalis Barzallo Delgado, Carlos Jadán Piedra
{"title":"Effect of Ph on the Physicochemical Properties of a Cassava Peel Starch Biopolymer.","authors":"Lisbeth Anchundia, Felipe Jadán Piedra, José Alejandro Macías Alcívar, Virginia Sánchez Mendoza, Danny Isaías Vera Guerrero, Sonia Nathaly Giler Intriago, Wagner Antonio Gorozabel Muñoz, Grether Lucía Real Pérez, Ricardo Loor Alava, Odalis Barzallo Delgado, Carlos Jadán Piedra","doi":"10.33594/000000753","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels. Understanding these effects is critical for increasing the acceptability of cassava peel starch biopolymers in a variety of industrial applications, notably environmentally friendly packaging solutions.</p><p><strong>Methods: </strong>Starch extracted from cassava peel was used to produce films using the casting method at specified pH levels. The films were evaluated for thickness and density using classical methods. Moisture content was determined following the AOAC 930.15 (2000) protocol. Color analysis was conducted using the CIELab color space technique. Water solubility and solubility in acidic (HCl) and alkaline (NaOH) solutions were assessed through chemical solubility tests performed by gravimetry.</p><p><strong>Results: </strong>The study investigated how pH impacts biopolymer films manufactured from cassava peel starch. The film thickness varied greatly across pH levels, with pH 10.5 creating the thickest films (0.158 ± 0.012 mm) and pH 6.5 providing the thinnest (0.118 ± 0.015 mm). Density varied slightly, from 1.393 ± 0.122 g/cc to 1.551 ± 0.153 g/cc. Moisture content fluctuated significantly, affecting biodegradability. Color study indicated pH-dependent variations in transparency and opacity, with higher pH values resulting in larger color deviations (∆E). Water solubility remained constant, but NaOH solubility dropped with increasing pH, peaking at pH 7.5 (23.44 ± 2.82%).</p><p><strong>Conclusion: </strong>This work investigates the use of cassava peel starch for biopolymer synthesis at controlled pH levels. The findings demonstrate the material's practicality and provide critical insights for enhancing film qualities, particularly in a variety of industrial applications and environmentally friendly packaging solutions.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 1","pages":"21-33"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/aims: This study investigates how pH levels affect the characteristics of biopolymer films manufactured from cassava peel starch. Cassava peel starch's abundance and biodegradability make it a promising candidate for sustainable packaging. The study seeks to improve film qualities such as thickness, density, moisture content, solubility, and optical properties by altering pH levels. Understanding these effects is critical for increasing the acceptability of cassava peel starch biopolymers in a variety of industrial applications, notably environmentally friendly packaging solutions.
Methods: Starch extracted from cassava peel was used to produce films using the casting method at specified pH levels. The films were evaluated for thickness and density using classical methods. Moisture content was determined following the AOAC 930.15 (2000) protocol. Color analysis was conducted using the CIELab color space technique. Water solubility and solubility in acidic (HCl) and alkaline (NaOH) solutions were assessed through chemical solubility tests performed by gravimetry.
Results: The study investigated how pH impacts biopolymer films manufactured from cassava peel starch. The film thickness varied greatly across pH levels, with pH 10.5 creating the thickest films (0.158 ± 0.012 mm) and pH 6.5 providing the thinnest (0.118 ± 0.015 mm). Density varied slightly, from 1.393 ± 0.122 g/cc to 1.551 ± 0.153 g/cc. Moisture content fluctuated significantly, affecting biodegradability. Color study indicated pH-dependent variations in transparency and opacity, with higher pH values resulting in larger color deviations (∆E). Water solubility remained constant, but NaOH solubility dropped with increasing pH, peaking at pH 7.5 (23.44 ± 2.82%).
Conclusion: This work investigates the use of cassava peel starch for biopolymer synthesis at controlled pH levels. The findings demonstrate the material's practicality and provide critical insights for enhancing film qualities, particularly in a variety of industrial applications and environmentally friendly packaging solutions.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.