{"title":"基于深度学习的阿尔茨海默病准确高效检测算法。","authors":"Fayez Alfayez, Sergey Rozov, Mohamed S El Tokhy","doi":"10.33594/000000746","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification.</p><p><strong>Methods: </strong>The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups-non-demented, very mild demented, mild demented, and moderate demented-was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time.</p><p><strong>Results: </strong>The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL-based CAD system.</p><p><strong>Conclusion: </strong>This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-the-art models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"58 6","pages":"739-755"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and Efficient Algorithm for Detection of Alzheimer Disability Based on Deep Learning.\",\"authors\":\"Fayez Alfayez, Sergey Rozov, Mohamed S El Tokhy\",\"doi\":\"10.33594/000000746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification.</p><p><strong>Methods: </strong>The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups-non-demented, very mild demented, mild demented, and moderate demented-was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time.</p><p><strong>Results: </strong>The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL-based CAD system.</p><p><strong>Conclusion: </strong>This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-the-art models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"58 6\",\"pages\":\"739-755\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Accurate and Efficient Algorithm for Detection of Alzheimer Disability Based on Deep Learning.
Background/aims: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification.
Methods: The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups-non-demented, very mild demented, mild demented, and moderate demented-was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time.
Results: The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL-based CAD system.
Conclusion: This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-the-art models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.