骨髓间充质干细胞通过调节分子生物标志物mRNA表达和凋亡率促进损伤组织修复。

IF 2.5 Q3 CELL BIOLOGY
Doaa Ramadan I Abdel-Gawad, Walaa A Moselhy, Rasha Rashad Ahmed, Hessah M Al-Muzafar, Kamal Adel Amin, Khaled Abbas Helmy Abdou
{"title":"骨髓间充质干细胞通过调节分子生物标志物mRNA表达和凋亡率促进损伤组织修复。","authors":"Doaa Ramadan I Abdel-Gawad, Walaa A Moselhy, Rasha Rashad Ahmed, Hessah M Al-Muzafar, Kamal Adel Amin, Khaled Abbas Helmy Abdou","doi":"10.33594/000000752","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.</p><p><strong>Methods: </strong>78 male albino rats were equally divided into 3 groups, control group (G1), bruise wound group (G2) and Bruised animals treated with BM-MSCs group (G3). The sequences of color changes were recorded. Animals were sacrificed and skin samples were collected for histopathological examination and analyzing the mRNA expression rate of transforming growth factor- β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), Heat shock protein-90 α (HSP-90α), Metalloprotiens-9 (MMP-9), and microRNA-21 (miR-21), which incorporated in the healing process and the apoptotic rat.</p><p><strong>Results: </strong>Subcutaneous injection of BM-MSCs reduced the color intensity of the bruised skin, with statistically significant upregulation of TGF-β, TNF-α, and HSP-90α, significant down-regulation of MMP-9 and miR-21 mRNA expression rate, and significant reduction of the apoptotic rate and the inflammatory cells.</p><p><strong>Conclusion: </strong>BM-MSCs have a promising improvement in the healing process of bruises by regulating the expression rate of TGF-β- IL-6- TNF-α- HSP-90α- MMP-9- miR-21 and reducing the apoptotic rate and inflammatory cell infiltration.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 1","pages":"1-20"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone Marrow Mesenchymal Stem Cells Promote Repairing the Bruised Tissue via Regulating mRNA Expression of Molecular Biomarkers and the Apoptotic Rate.\",\"authors\":\"Doaa Ramadan I Abdel-Gawad, Walaa A Moselhy, Rasha Rashad Ahmed, Hessah M Al-Muzafar, Kamal Adel Amin, Khaled Abbas Helmy Abdou\",\"doi\":\"10.33594/000000752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.</p><p><strong>Methods: </strong>78 male albino rats were equally divided into 3 groups, control group (G1), bruise wound group (G2) and Bruised animals treated with BM-MSCs group (G3). The sequences of color changes were recorded. Animals were sacrificed and skin samples were collected for histopathological examination and analyzing the mRNA expression rate of transforming growth factor- β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), Heat shock protein-90 α (HSP-90α), Metalloprotiens-9 (MMP-9), and microRNA-21 (miR-21), which incorporated in the healing process and the apoptotic rat.</p><p><strong>Results: </strong>Subcutaneous injection of BM-MSCs reduced the color intensity of the bruised skin, with statistically significant upregulation of TGF-β, TNF-α, and HSP-90α, significant down-regulation of MMP-9 and miR-21 mRNA expression rate, and significant reduction of the apoptotic rate and the inflammatory cells.</p><p><strong>Conclusion: </strong>BM-MSCs have a promising improvement in the healing process of bruises by regulating the expression rate of TGF-β- IL-6- TNF-α- HSP-90α- MMP-9- miR-21 and reducing the apoptotic rate and inflammatory cell infiltration.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"59 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:瘀伤是指血液外渗,可轻可重。骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BM-MSCs)是再生医学中最有前途的细胞之一,可用于治疗多种疾病。我们的目的是评估骨髓间充质干细胞治疗皮肤瘀伤的效率。方法:78只雄性白化大鼠随机分为3组,分别为对照组(G1)、瘀伤组(G2)和脑基质干细胞组(G3)。记录颜色变化的顺序。处死动物,取皮肤标本进行组织病理学检查,分析愈合过程中及凋亡大鼠中存在的转化生长因子-β (TGF-β)、白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)、热休克蛋白-90α (HSP-90α)、金属蛋白酶-9 (MMP-9)、microRNA-21 (miR-21) mRNA表达率。结果:皮下注射BM-MSCs后,挫伤皮肤颜色强度降低,TGF-β、TNF-α、HSP-90α表达上调,MMP-9、miR-21 mRNA表达率下调,凋亡率及炎症细胞明显减少。结论:BM-MSCs通过调节TGF-β- IL-6- TNF-α- HSP-90α- MMP-9- miR-21的表达率,降低细胞凋亡率和炎症细胞浸润,对瘀伤愈合过程有良好的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bone Marrow Mesenchymal Stem Cells Promote Repairing the Bruised Tissue via Regulating mRNA Expression of Molecular Biomarkers and the Apoptotic Rate.

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

Methods: 78 male albino rats were equally divided into 3 groups, control group (G1), bruise wound group (G2) and Bruised animals treated with BM-MSCs group (G3). The sequences of color changes were recorded. Animals were sacrificed and skin samples were collected for histopathological examination and analyzing the mRNA expression rate of transforming growth factor- β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), Heat shock protein-90 α (HSP-90α), Metalloprotiens-9 (MMP-9), and microRNA-21 (miR-21), which incorporated in the healing process and the apoptotic rat.

Results: Subcutaneous injection of BM-MSCs reduced the color intensity of the bruised skin, with statistically significant upregulation of TGF-β, TNF-α, and HSP-90α, significant down-regulation of MMP-9 and miR-21 mRNA expression rate, and significant reduction of the apoptotic rate and the inflammatory cells.

Conclusion: BM-MSCs have a promising improvement in the healing process of bruises by regulating the expression rate of TGF-β- IL-6- TNF-α- HSP-90α- MMP-9- miR-21 and reducing the apoptotic rate and inflammatory cell infiltration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信