Bendegúz Sramkó, Anna Földes, Kristóf Kádár, Gábor Varga, Ákos Zsembery, Karolina Pircs
{"title":"The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells.","authors":"Bendegúz Sramkó, Anna Földes, Kristóf Kádár, Gábor Varga, Ákos Zsembery, Karolina Pircs","doi":"10.1089/cell.2022.0102","DOIUrl":"https://doi.org/10.1089/cell.2022.0102","url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. <i>In vitro</i> expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for <i>in vitro</i> neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation <i>in vitro</i> and even for direct reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"32-44"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis.","authors":"Haoling Chen, Zijing Huang, Chuxiao Chen","doi":"10.1089/cell.2022.0091","DOIUrl":"https://doi.org/10.1089/cell.2022.0091","url":null,"abstract":"<p><p>Odontogenesis is a complex physiological process that is based on dental tissue-derived mesenchymal stem cells (MSCs). Dental tissue-derived MSCs are the stem cell populations isolated and characterized from different parts of the oral cavity, and are considered as promising candidates for stem cell-based therapy. During odontogenesis, epigenetic factors can influence the proliferation, differentiation, or apoptosis of dental tissue-derived MSCs. As one of the epigenetic modifications, histone acetylation modification is critical for the proper regulation of many biological processes, including transcriptional regulation of cell cycle progression and cell fate. In odontogenesis, histone acetylation and deacetylation play crucial roles in odontogenic differentiation of dental tissue-derived MSCs. In this review, we aim to outline the general features of acetylation modification and describe their roles in odontogenic differentiation of dental tissue-derived MSCs, as well as their future implications in the field of novel regenerative therapies for the dentine-pulp complex.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"11-19"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9132527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Roadmap of the Early Events of <i>In Vivo</i> Somatic Cell Reprogramming.","authors":"Diana Guallar","doi":"10.1089/cell.2022.0160","DOIUrl":"https://doi.org/10.1089/cell.2022.0160","url":null,"abstract":"<p><p>Single-cell transcriptomics and <i>in situ</i> imaging of murine pancreas upon partial reprogramming <i>in vivo</i> reveal transcriptional dynamics upon <i>Oct4</i>, <i>Sox2</i>, <i>Klf4</i>, and <i>cMyc</i> (OSKM) induction. Interestingly, transcriptomic signatures of partial reprogramming observed in pancreas are shared by several tissues upon OSKM induction as well as during <i>in vitro</i> reprogramming of fibroblasts, pointing to the existence of conserved pathways critical for early reprogramming, regeneration, and rejuvenation.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"7-8"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9188754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Understanding the Roles of Mesenchymal Stem Cells in Lung Cancer.","authors":"Wenli Ding, Kexin Zhang, Qinying Li, Linfei Xu, Yanhui Ma, Fang Han, Liang Zhu, Xiaodong Sun","doi":"10.1089/cell.2022.0133","DOIUrl":"https://doi.org/10.1089/cell.2022.0133","url":null,"abstract":"<p><p>Lung cancer is the most common and deadliest type of cancer worldwide. Research concerning lung cancer has made considerable progress in recent decades, but lung cancer remains the leading cause of malignancy-related mortality rate. Mesenchymal stem cells (MSCs) mainly exist in fat, umbilical cord blood, bone marrow, bone, and muscle. MSCs are a primary component of the tumor microenvironment (TME). Recent studies have shown that MSCs have roles in lung cancer-related proliferation, invasion, migration, and angiogenesis, but the underlying mechanisms are poorly understood. Because MSCs can migrate to the TME, there is increasing attention toward the use of MSCs in drugs or gene vectors for cancer treatment. This review summarizes the roles and effects of MSCs in lung cancer, while addressing clinical applications of MSCs in lung cancer treatment.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"20-31"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9132529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular reprogrammingPub Date : 2022-12-01Epub Date: 2022-11-21DOI: 10.1089/cell.2022.0128
Mo-Fan Huang, Rachel Shoemaker, Dung-Fang Lee
{"title":"Bcl11b and Atoh8 Coordinate Cellular Plasticity for Reprogramming and Transformation.","authors":"Mo-Fan Huang, Rachel Shoemaker, Dung-Fang Lee","doi":"10.1089/cell.2022.0128","DOIUrl":"10.1089/cell.2022.0128","url":null,"abstract":"<p><p>By dissecting and comparing the transcriptional trajectories and epigenomic traits of reprogramming and transforming cells at the single-cell resolution, Huyghe et al discovered Bcl11b and Atoh8, two key transcription factors controlling cell plasticity during pluripotent reprogramming and oncogenic transformation.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"24 6","pages":"324-326"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10627360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Call for Special Issue Papers:</i> Cellular Reprogramming 25th Anniversary Deadline for Manuscript Submission: April 30, 2023.","authors":"Carlos-Filipe Pereira","doi":"10.1089/cell.2022.29073.cfp","DOIUrl":"https://doi.org/10.1089/cell.2022.29073.cfp","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"24 6","pages":"315-316"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9137869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular reprogrammingPub Date : 2022-12-01Epub Date: 2022-11-03DOI: 10.1089/cell.2022.0071
Alexandra Moauro, Robin E Kruger, Daniel O'Hagan, Amy Ralston
{"title":"Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming.","authors":"Alexandra Moauro, Robin E Kruger, Daniel O'Hagan, Amy Ralston","doi":"10.1089/cell.2022.0071","DOIUrl":"10.1089/cell.2022.0071","url":null,"abstract":"<p><p>Somatic cell reprogramming was first developed to create induced pluripotent stem (iPS) cells. Since that time, the highly dynamic and heterogeneous nature of the reprogramming process has come to be appreciated. Remarkably, a distinct type of stem cell, called induced extraembryonic endoderm (iXEN) stem cell, is also formed during reprogramming of mouse somatic cells by ectopic expression of the transcription factors, OCT4, SOX2, KLF4, and MYC (OSKM). The mechanisms leading somatic cells to adopt differing stem cell fates are challenging to resolve given that formation of either stem cell type is slow, stochastic, and rare. For these reasons, fluorescent gene expression reporters have provided an invaluable tool for revealing the path from the somatic state to pluripotency. However, no such reporters have been established for comparable studies of iXEN cell formation. In this study, we examined the expression of multiple fluorescent reporters, including <i>Nanog</i>, <i>Oct4</i>, and the endodermal genes, <i>Gata4</i> and <i>Gata6</i>-alone and in combination, during reprogramming. We show that only simultaneous evaluation of <i>Nanog</i> and <i>Gata4</i> reliably distinguishes iPS and iXEN cell colonies during reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"24 6","pages":"353-362"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7b/1e/cell.2022.0071.PMC9805857.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9080971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Handi Cao, Sanxing Gao, Ritika Jogani, Ryohichi Sugimura
{"title":"The Tumor Microenvironment Reprograms Immune Cells.","authors":"Handi Cao, Sanxing Gao, Ritika Jogani, Ryohichi Sugimura","doi":"10.1089/cell.2022.0047","DOIUrl":"https://doi.org/10.1089/cell.2022.0047","url":null,"abstract":"<p><p>Tumor tissue comprises a highly complex network of diverse cell types. The tumor microenvironment (TME) can be mainly subdivided into cancer cells and stromal cell compartments, the latter include different types of immune cells, fibroblasts, endothelial cells, and pericytes. Tumor cells reprogram immune cells and other stromal cells in the TME to constrain their antitumor capacity by creating an immunosuppressive milieu and metabolism competition. Moreover, the reprogramming effect on immune cells is localized not only in the tumor but also at the systemic level. With wide application of single-cell sequencing technology, tumor-specific characteristics of immune cells and other stromal cells in the TME have been dissected. In this review, we mainly focus on how tumor cells reprogram immune cells both within the TME and peripheral blood. This information can further help us to improve the efficiency of current immunotherapy as well as bring up new ideas to combat cancer.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"24 6","pages":"343-352"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10572719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}