Cellular reprogramming最新文献

筛选
英文 中文
Reprogramming Stars #11: Teaming Up to Uncover the Epitranscriptomics of Reprogramming-An Interview with Dr. Miguel Fidalgo and Dr. Diana Guallar. 重编程之星》第11期:联手揭示重编程的外转录组学--专访米格尔-菲达尔戈博士和戴安娜-瓜拉尔博士。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-04-01 DOI: 10.1089/cell.2023.0024
Miguel Fidalgo, Diana Guallar, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #11: Teaming Up to Uncover the Epitranscriptomics of Reprogramming-An Interview with Dr. Miguel Fidalgo and Dr. Diana Guallar.","authors":"Miguel Fidalgo, Diana Guallar, Carlos-Filipe Pereira","doi":"10.1089/cell.2023.0024","DOIUrl":"10.1089/cell.2023.0024","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 2","pages":"45-50"},"PeriodicalIF":1.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9364116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fundamental Research in In Vitro Spermatogonial Stem Cell Culturing: What Are Clump Cells? 精原干细胞体外培养的基础研究:什么是团块细胞?
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-04-01 DOI: 10.1089/cell.2022.0123
Kiana Sojoudi, Hossein Azizi, Thomas Skutella
{"title":"A Fundamental Research in <i>In Vitro</i> Spermatogonial Stem Cell Culturing: What Are Clump Cells?","authors":"Kiana Sojoudi,&nbsp;Hossein Azizi,&nbsp;Thomas Skutella","doi":"10.1089/cell.2022.0123","DOIUrl":"https://doi.org/10.1089/cell.2022.0123","url":null,"abstract":"<p><p>Spermatogonial stem cells (SSCs) are a small group of testicular cells located in the basement membrane of seminiferous tubules and can balance self-renewal and differentiation during spermatogenesis. Our <i>in vitro</i> culture experiments of mouse SSCs indicated heterogeneity of cultured cells. Highly compact colonies were observed next to SSC colonies, which we call clump cells. We used immunocytochemical staining to identify SSCs and somatic cells with <i>VASA</i> and <i>Vimentin</i> antibodies. Subsequently, we compared mRNA expression levels of <i>VASA</i>, <i>DAZL</i>, <i>PLZF</i>, <i>GFRA1</i>, <i>Lin28</i>, <i>Kit</i>, <i>Myc</i> and <i>Vimentin</i> genes using Fluidigm real-time RT-polymerase chain reaction in clump cells, SSCs, and testicular stromal cells. To better understand the functions of selected genes, we created a protein-protein interaction network and performed an enrichment analysis using different databases. Based on the data collected, we state that clump cells do not express the molecular markers of SSCs, so we cannot consider them as SSCs; however, we claim that these cells are altered SSCs. The molecular mechanism of this conversion is still obscure. Therefore, this study can support the analysis of germ cell development both <i>in vitro</i> and <i>in vivo</i>. In addition, it can be effective in finding new and more efficient treatments for male infertility.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 2","pages":"65-72"},"PeriodicalIF":1.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reprogramming Stars #10: Modeling Cancer with Cellular Reprogramming-An Interview with Dr. Dung-Fang Lee. 重编程明星 #10:用细胞重编程模拟癌症--专访 Dung-Fang Lee 博士。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 Epub Date: 2023-01-31 DOI: 10.1089/cell.2023.29081.dfl
Dung-Fang Lee, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #10: Modeling Cancer with Cellular Reprogramming-An Interview with Dr. Dung-Fang Lee.","authors":"Dung-Fang Lee, Carlos-Filipe Pereira","doi":"10.1089/cell.2023.29081.dfl","DOIUrl":"10.1089/cell.2023.29081.dfl","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"2-6"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Life Reprogramming-Based Treatment Promotes Longevity. 基于生命早期重编程的治疗促进长寿。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 Epub Date: 2022-12-30 DOI: 10.1089/cell.2022.0153
Patrizia Pessina, Bruno Di Stefano
{"title":"Early Life Reprogramming-Based Treatment Promotes Longevity.","authors":"Patrizia Pessina, Bruno Di Stefano","doi":"10.1089/cell.2022.0153","DOIUrl":"10.1089/cell.2022.0153","url":null,"abstract":"<p><p>Short-term expression of Yamanaka factors early in life promotes epigenetic reprogramming and an increased healthy lifespan in a mouse model of accelerated aging.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"9-10"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9279931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells. 牙齿中的智慧:牙髓细胞的神经元分化。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 DOI: 10.1089/cell.2022.0102
Bendegúz Sramkó, Anna Földes, Kristóf Kádár, Gábor Varga, Ákos Zsembery, Karolina Pircs
{"title":"The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells.","authors":"Bendegúz Sramkó,&nbsp;Anna Földes,&nbsp;Kristóf Kádár,&nbsp;Gábor Varga,&nbsp;Ákos Zsembery,&nbsp;Karolina Pircs","doi":"10.1089/cell.2022.0102","DOIUrl":"https://doi.org/10.1089/cell.2022.0102","url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. <i>In vitro</i> expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for <i>in vitro</i> neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation <i>in vitro</i> and even for direct reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"32-44"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis. 组蛋白乙酰化修饰在牙组织源性间充质干细胞和牙形成中的作用。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 DOI: 10.1089/cell.2022.0091
Haoling Chen, Zijing Huang, Chuxiao Chen
{"title":"The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis.","authors":"Haoling Chen,&nbsp;Zijing Huang,&nbsp;Chuxiao Chen","doi":"10.1089/cell.2022.0091","DOIUrl":"https://doi.org/10.1089/cell.2022.0091","url":null,"abstract":"<p><p>Odontogenesis is a complex physiological process that is based on dental tissue-derived mesenchymal stem cells (MSCs). Dental tissue-derived MSCs are the stem cell populations isolated and characterized from different parts of the oral cavity, and are considered as promising candidates for stem cell-based therapy. During odontogenesis, epigenetic factors can influence the proliferation, differentiation, or apoptosis of dental tissue-derived MSCs. As one of the epigenetic modifications, histone acetylation modification is critical for the proper regulation of many biological processes, including transcriptional regulation of cell cycle progression and cell fate. In odontogenesis, histone acetylation and deacetylation play crucial roles in odontogenic differentiation of dental tissue-derived MSCs. In this review, we aim to outline the general features of acetylation modification and describe their roles in odontogenic differentiation of dental tissue-derived MSCs, as well as their future implications in the field of novel regenerative therapies for the dentine-pulp complex.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"11-19"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9132527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roadmap of the Early Events of In Vivo Somatic Cell Reprogramming. 体内体细胞重编程早期事件的路线图。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 DOI: 10.1089/cell.2022.0160
Diana Guallar
{"title":"Roadmap of the Early Events of <i>In Vivo</i> Somatic Cell Reprogramming.","authors":"Diana Guallar","doi":"10.1089/cell.2022.0160","DOIUrl":"https://doi.org/10.1089/cell.2022.0160","url":null,"abstract":"<p><p>Single-cell transcriptomics and <i>in situ</i> imaging of murine pancreas upon partial reprogramming <i>in vivo</i> reveal transcriptional dynamics upon <i>Oct4</i>, <i>Sox2</i>, <i>Klf4</i>, and <i>cMyc</i> (OSKM) induction. Interestingly, transcriptomic signatures of partial reprogramming observed in pancreas are shared by several tissues upon OSKM induction as well as during <i>in vitro</i> reprogramming of fibroblasts, pointing to the existence of conserved pathways critical for early reprogramming, regeneration, and rejuvenation.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"7-8"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9188754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2022. 审稿人致谢2022。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 DOI: 10.1089/cell.2023.29082.ack
{"title":"Acknowledgment of Reviewers 2022.","authors":"","doi":"10.1089/cell.2023.29082.ack","DOIUrl":"https://doi.org/10.1089/cell.2023.29082.ack","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"1"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10731431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Understanding the Roles of Mesenchymal Stem Cells in Lung Cancer. 间充质干细胞在肺癌中的作用研究进展。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2023-02-01 DOI: 10.1089/cell.2022.0133
Wenli Ding, Kexin Zhang, Qinying Li, Linfei Xu, Yanhui Ma, Fang Han, Liang Zhu, Xiaodong Sun
{"title":"Advances in Understanding the Roles of Mesenchymal Stem Cells in Lung Cancer.","authors":"Wenli Ding,&nbsp;Kexin Zhang,&nbsp;Qinying Li,&nbsp;Linfei Xu,&nbsp;Yanhui Ma,&nbsp;Fang Han,&nbsp;Liang Zhu,&nbsp;Xiaodong Sun","doi":"10.1089/cell.2022.0133","DOIUrl":"https://doi.org/10.1089/cell.2022.0133","url":null,"abstract":"<p><p>Lung cancer is the most common and deadliest type of cancer worldwide. Research concerning lung cancer has made considerable progress in recent decades, but lung cancer remains the leading cause of malignancy-related mortality rate. Mesenchymal stem cells (MSCs) mainly exist in fat, umbilical cord blood, bone marrow, bone, and muscle. MSCs are a primary component of the tumor microenvironment (TME). Recent studies have shown that MSCs have roles in lung cancer-related proliferation, invasion, migration, and angiogenesis, but the underlying mechanisms are poorly understood. Because MSCs can migrate to the TME, there is increasing attention toward the use of MSCs in drugs or gene vectors for cancer treatment. This review summarizes the roles and effects of MSCs in lung cancer, while addressing clinical applications of MSCs in lung cancer treatment.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"25 1","pages":"20-31"},"PeriodicalIF":1.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9132529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bcl11b and Atoh8 Coordinate Cellular Plasticity for Reprogramming and Transformation. Bcl11b和Atoh8协调细胞重编程和转化的可塑性。
IF 1.6 4区 医学
Cellular reprogramming Pub Date : 2022-12-01 Epub Date: 2022-11-21 DOI: 10.1089/cell.2022.0128
Mo-Fan Huang, Rachel Shoemaker, Dung-Fang Lee
{"title":"Bcl11b and Atoh8 Coordinate Cellular Plasticity for Reprogramming and Transformation.","authors":"Mo-Fan Huang, Rachel Shoemaker, Dung-Fang Lee","doi":"10.1089/cell.2022.0128","DOIUrl":"10.1089/cell.2022.0128","url":null,"abstract":"<p><p>By dissecting and comparing the transcriptional trajectories and epigenomic traits of reprogramming and transforming cells at the single-cell resolution, Huyghe et al discovered Bcl11b and Atoh8, two key transcription factors controlling cell plasticity during pluripotent reprogramming and oncogenic transformation.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"24 6","pages":"324-326"},"PeriodicalIF":1.6,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10627360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信