{"title":"In Vitro Induction of Human Dental Pulp Stem Cells to Lymphatic Endothelial Cells.","authors":"Shuqun Qi, L. Ye, Liru Hu, Jian Pan","doi":"10.1089/cell.2021.0106","DOIUrl":"https://doi.org/10.1089/cell.2021.0106","url":null,"abstract":"Lymphedema is a progressive and irreversible disease due to the lymphatic system disorder. Conservative and surgical therapies are either ineffective or impractical. Currently, mesenchymal stem cells (MSCs)-based therapies seem to be the most promising treatment for lymphedema. The MSCs promote lymphangiogenesis through the paracrine approach or by directly differentiating into lymphatic endothelial cells (LECs) under the induction of growth factors. Human dental pulp stem cells (hDPSCs) have been suggested to play important roles in tissue regeneration, making it an attractive candidate for the lymphedema treatment. In this study, to evaluate the potential role of hDPSCs in the clinical application for lymphedema treatment, we induced the hDPSCs with vascular endothelial growth factor-C (VEGF-C) and investigated the lymphangiogenic differentiation potential of hDPSCs in vitro. We found that under the VEGF-C induction, hDPSCs demonstrated upregulated LECs specific markers, promoted cell proliferation and migration, and increased tube formation, all of which contributed to their differentiation into LECs in vitro.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45529789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Alternative Way to Improve Mammalian Embryo Development In Vitro: Culture of Zona Pellucida-Free Embryos.","authors":"Sarah Madani, Z. Machaty, G. Vajta","doi":"10.1089/cell.2022.0012","DOIUrl":"https://doi.org/10.1089/cell.2022.0012","url":null,"abstract":"An increasing number of data proves that the presence of the zona pellucida is not essential to mammalian embryo production, including maturation, fertilization, and embryo culture. In fact, the structure of the zona pellucida of in vitro-produced embryos differs significantly from its in vivo counterpart, influencing metabolism and requiring disproportionate efforts to crack open at the time of hatching. This review aims to focus attention on this field and stimulate research in zona-free embryo culture. In domestic animals, extensive application of purpose-designed culture systems for zona-free embryos proved the feasibility of this approach. It may open new possibilities and increase efficiency in both transgenic research and human-assisted reproduction.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42588196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Trichostatin A on the Timing of the First Cleavage and In Vitro Developmental Potential of Bovine Somatic Cell Nuclear Transfer Embryos.","authors":"S. Akagi, K. Matsukawa","doi":"10.1089/cell.2022.0003","DOIUrl":"https://doi.org/10.1089/cell.2022.0003","url":null,"abstract":"This study examined the relationship between the timing of the first cleavage and in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos treated with trichostatin A (TSA). SCNT embryos were visually assessed at 22, 26, and 48 hours after activation. Each embryo with two or more distinct blastomeres was transferred into a microwell and cultured until day 7. Irrespective of TSA treatment, approximately half of the cleaved embryos were observed at 22 hours, and a significantly higher blastocyst formation rate was shown in the SCNT embryos cleaved at 22 hours than those cleaved at ≥26 hours. The blastocyst formation rate of TSA-treated embryos cleaved at 22 hours (80%) was slightly higher than that of the control embryos (70%). In addition, interferon-τ (IFN-τ) expression was significantly lower in control SCNT embryos and late-cleaving (>26 hours) TSA-treated embryos than in in vitro fertilized (IVF) embryos. However, a significant difference was not observed between TSA-treated SCNT embryos cleaved at 22 and 26 hours, and IVF embryos. These results suggest that TSA treatment has no influence on the timing of the first cleavage of SCNT embryos; however, it slightly improves the blastocyst formation rate and the expression level of IFN-τ in early-cleaving embryos.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41346897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reprogramming Stars #6: A Venture Based in Cellular Reprogramming-An Interview with Dr. Cristiana Pires.","authors":"Cristiana F Pires, Carlos-Filipe Pereira","doi":"10.1089/cell.2022.29061.cp","DOIUrl":"10.1089/cell.2022.29061.cp","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48099239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation.","authors":"Huiyun Li, Muzhe Li, Xun Ran, Juncheng Cui, Fu Wei, Guoliang Yi, Wei Chen, Xuling Luo, Zhiwei Chen","doi":"10.1089/cell.2021.0137","DOIUrl":"https://doi.org/10.1089/cell.2021.0137","url":null,"abstract":"<p><p>Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39790734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular reprogrammingPub Date : 2022-04-01Epub Date: 2022-02-16DOI: 10.1089/cell.2021.0113
Jingwen Xiao, Ya Zheng, Wei Zhang, Ye Zhang, Peipei Cao, Yi Liang, Liuliu Bao, Suping Shi, Xingmei Feng
{"title":"General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells.","authors":"Jingwen Xiao, Ya Zheng, Wei Zhang, Ye Zhang, Peipei Cao, Yi Liang, Liuliu Bao, Suping Shi, Xingmei Feng","doi":"10.1089/cell.2021.0113","DOIUrl":"https://doi.org/10.1089/cell.2021.0113","url":null,"abstract":"<p><p>Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39929007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular reprogrammingPub Date : 2022-04-01Epub Date: 2022-02-15DOI: 10.1089/cell.2021.0090
Wenbin Cao, Jinpeng Zhao, Pengxiang Qu, Enqi Liu
{"title":"Current Progress and Prospects in Rabbit Cloning.","authors":"Wenbin Cao, Jinpeng Zhao, Pengxiang Qu, Enqi Liu","doi":"10.1089/cell.2021.0090","DOIUrl":"https://doi.org/10.1089/cell.2021.0090","url":null,"abstract":"<p><p>Somatic cell nuclear transfer (SCNT) shows great value in the generation of transgenic animals, protection of endangered animals, and stem cell therapy. The combination of SCNT and gene editing has produced a variety of genetically modified animals for life science and medical research. Rabbits have unique advantages as transgenic bioreactors and human disease models; however, the low SCNT efficiency severely impedes the application of this technology. The difficulty in SCNT may be attributable to the abnormal reprogramming of somatic cells in rabbits. This review focuses on the abnormal reprogramming of cloned mammalian embryos and evaluates the progress and prospects of rabbit somatic cell cloning.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39925510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two Sets of Compound Complex Driving for High Efficiency of Nonintegration Reprogramming of Human Fibroblasts.","authors":"Xiangyi Lin, Cuiping Rong, Shouhai Wu","doi":"10.1089/cell.2021.0143","DOIUrl":"https://doi.org/10.1089/cell.2021.0143","url":null,"abstract":"Currently, plentiful chemical-assisted methods have been applied for mouse induced pluripotent stem cells (iPSCs). It has been reported that small-molecule compounds can only reprogram mouse embryonic fibroblasts into mouse chemically induced pluripotent stem cells (mouse CiPSCs). However, human CiPSCs have not been reported. Therefore, it is still necessary to search for safer chemically assisted human pluripotent stem cells, which might realize the potential of human iPSCs. Here, we developed two sets of chemical cocktails to greatly improve the induction efficiency of human nonintegrated iPSCs, including the 4 compound mixture (4M) and the 5 compound mixture (4MI). These two sets of complex driving strategies might greatly improve the reprogramming efficiency to generate integration-free iPSCs.","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47882629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellular reprogrammingPub Date : 2022-02-01Epub Date: 2022-02-08DOI: 10.1089/cell.2022.29055.nl
Nicholas D Leigh, Carlos-Filipe Pereira
{"title":"Reprogramming Stars #5: Regeneration, a Natural Reprogramming Process-An Interview with Dr. Nicholas Leigh.","authors":"Nicholas D Leigh, Carlos-Filipe Pereira","doi":"10.1089/cell.2022.29055.nl","DOIUrl":"https://doi.org/10.1089/cell.2022.29055.nl","url":null,"abstract":"","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39899218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}