{"title":"人皮肤成纤维细胞心脏重编程的重要因子——GATA4的适当外源性表达化学计量。","authors":"Xiangyu Zhang, Qi Zhang, Lijun Chen, Baomei Cai, Mengying Zeng, Sihua Ou, Yating Chen, Ziyu Feng, Huan Chen, Shangtao Cao, Kai Kang","doi":"10.1089/cell.2022.0014","DOIUrl":null,"url":null,"abstract":"<p><p>Reprogramming of human dermal fibroblasts (HDFs) into induced cardiomyocyte-like cells (iCMs) represents a promising strategy for human cardiac regeneration. Different cocktails of cardiac transcription factors can convert HDFs into iCMs, although with low efficiency and immature phenotype. Here, GATA4, MEF2C, TBX5, MESP1, and MYOCD (GMTMeMy for short) were used to reprogram HDFs by retrovirus infection. We found that the exogenous expression stoichiometry of GATA4 (GATA4 stoichiometry) significantly affected reprogramming efficiency. When 1/8 dosage of GATA4 virus (GATA4 dosage) plus MTMeMy was used, the reprogramming efficiency was obviously improved compared with average pooled virus encoding each factor, which measured, by the expression level of cardiac genes, the percentage of cardiac troponin T and alpha-cardiac myosin heavy-chain immunopositive cells and the numbers of iCMs showing calcium oscillation or beating synchronously in co-culture with mouse CMs. In addition, we prepared conditioned maintenance medium (CMM) by CM differentiation of H9 human embryonic stem cell line. We found that compared with traditional maintenance medium (TMM), CMM made iCMs show well-organized sarcomere formation and characteristic calcium oscillation wave earlier. These findings demonstrated that appropriate GATA4 stoichiometry was essential for cardiac reprogramming and some components in CMM were important for maturation of iCMs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"283-293"},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appropriate Exogenous Expression Stoichiometry of GATA4 as an Important Factor for Cardiac Reprogramming of Human Dermal Fibroblasts.\",\"authors\":\"Xiangyu Zhang, Qi Zhang, Lijun Chen, Baomei Cai, Mengying Zeng, Sihua Ou, Yating Chen, Ziyu Feng, Huan Chen, Shangtao Cao, Kai Kang\",\"doi\":\"10.1089/cell.2022.0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reprogramming of human dermal fibroblasts (HDFs) into induced cardiomyocyte-like cells (iCMs) represents a promising strategy for human cardiac regeneration. Different cocktails of cardiac transcription factors can convert HDFs into iCMs, although with low efficiency and immature phenotype. Here, GATA4, MEF2C, TBX5, MESP1, and MYOCD (GMTMeMy for short) were used to reprogram HDFs by retrovirus infection. We found that the exogenous expression stoichiometry of GATA4 (GATA4 stoichiometry) significantly affected reprogramming efficiency. When 1/8 dosage of GATA4 virus (GATA4 dosage) plus MTMeMy was used, the reprogramming efficiency was obviously improved compared with average pooled virus encoding each factor, which measured, by the expression level of cardiac genes, the percentage of cardiac troponin T and alpha-cardiac myosin heavy-chain immunopositive cells and the numbers of iCMs showing calcium oscillation or beating synchronously in co-culture with mouse CMs. In addition, we prepared conditioned maintenance medium (CMM) by CM differentiation of H9 human embryonic stem cell line. We found that compared with traditional maintenance medium (TMM), CMM made iCMs show well-organized sarcomere formation and characteristic calcium oscillation wave earlier. These findings demonstrated that appropriate GATA4 stoichiometry was essential for cardiac reprogramming and some components in CMM were important for maturation of iCMs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"283-293\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/cell.2022.0014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2022.0014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Appropriate Exogenous Expression Stoichiometry of GATA4 as an Important Factor for Cardiac Reprogramming of Human Dermal Fibroblasts.
Reprogramming of human dermal fibroblasts (HDFs) into induced cardiomyocyte-like cells (iCMs) represents a promising strategy for human cardiac regeneration. Different cocktails of cardiac transcription factors can convert HDFs into iCMs, although with low efficiency and immature phenotype. Here, GATA4, MEF2C, TBX5, MESP1, and MYOCD (GMTMeMy for short) were used to reprogram HDFs by retrovirus infection. We found that the exogenous expression stoichiometry of GATA4 (GATA4 stoichiometry) significantly affected reprogramming efficiency. When 1/8 dosage of GATA4 virus (GATA4 dosage) plus MTMeMy was used, the reprogramming efficiency was obviously improved compared with average pooled virus encoding each factor, which measured, by the expression level of cardiac genes, the percentage of cardiac troponin T and alpha-cardiac myosin heavy-chain immunopositive cells and the numbers of iCMs showing calcium oscillation or beating synchronously in co-culture with mouse CMs. In addition, we prepared conditioned maintenance medium (CMM) by CM differentiation of H9 human embryonic stem cell line. We found that compared with traditional maintenance medium (TMM), CMM made iCMs show well-organized sarcomere formation and characteristic calcium oscillation wave earlier. These findings demonstrated that appropriate GATA4 stoichiometry was essential for cardiac reprogramming and some components in CMM were important for maturation of iCMs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.