Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Resa Te Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra
{"title":"The beauty and complexity of the small heat shock proteins: a report on the proceedings of the fourth workshop on small heat shock proteins.","authors":"Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Resa Te Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra","doi":"10.1007/s12192-023-01360-x","DOIUrl":"https://doi.org/10.1007/s12192-023-01360-x","url":null,"abstract":"<p><p>The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Lucas Pacheco Cavalcante, Sávio Justino da Silva, Lineker de Sousa Lopes, Stelamaris de Oliveira Paula-Marinho, Maria Izabel Florindo Guedes, Enéas Gomes-Filho, Humberto Henrique de Carvalho
{"title":"Unveiling a differential metabolite modulation of sorghum varieties under increasing tunicamycin-induced endoplasmic reticulum stress.","authors":"Francisco Lucas Pacheco Cavalcante, Sávio Justino da Silva, Lineker de Sousa Lopes, Stelamaris de Oliveira Paula-Marinho, Maria Izabel Florindo Guedes, Enéas Gomes-Filho, Humberto Henrique de Carvalho","doi":"10.1007/s12192-023-01382-5","DOIUrl":"https://doi.org/10.1007/s12192-023-01382-5","url":null,"abstract":"<p><p>Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL<sup>-1</sup>): control (0), lower (0.5), mild (1.5), and higher (2.5) on the initial establishment of sorghum seedlings CSF18 and CSF20. ER stress promoted growth and metabolism reductions, mainly in CSF18, from mild to higher TM. The lowest TM increased SbBiP and SbPDI chaperones, as well as SbbZIP60, and SbbIRE1 gene expressions, but mild and higher TM decreased it. However, CSF20 exhibited higher levels of SbBiP and SbbIRE1 transcripts. It corroborated different metabolic profiles among all TM treatments in CSF18 shoots and similarities between profiles of mild and higher TM in CSF18 roots. Conversely, TM profiles of both shoots and roots of CSF20 overlapped, although it was not complete under low TM treatment. Furthermore, ER stress induced an increase of carbohydrates (dihydroxyacetone in shoots, and cellobiose, maltose, ribose, and sucrose in roots), and organic acids (pyruvic acid in shoots, and butyric and succinic acids in roots) in CSF20, which exhibited a higher degree of ER stress tolerance compared to CSF18 with the root being the most affected plant tissue. Thus, our study provides new insights that may help to understand sorghum tolerance and the ER disturbance as significant contributor for stress adaptation and tolerance engineering.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell Stress & ChaperonesPub Date : 2023-11-01Epub Date: 2023-06-23DOI: 10.1007/s12192-023-01362-9
Abir Chakraborty, Ronald Tonui, Adrienne Lesley Edkins
{"title":"Mutations F352A and Y528A in human HSP90α reduce fibronectin association and fibrillogenesis in cell-derived matrices.","authors":"Abir Chakraborty, Ronald Tonui, Adrienne Lesley Edkins","doi":"10.1007/s12192-023-01362-9","DOIUrl":"10.1007/s12192-023-01362-9","url":null,"abstract":"<p><p>HSP90 is a ubiquitously expressed chaperone protein that regulates the maturation of numerous substrate proteins called 'clients'. The glycoprotein fibronectin (FN) is an important protein of the extracellular matrix (ECM) and a client protein of HSP90. FN and HSP90 interact directly, and the FN ECM is regulated by exogenous HSP90 or HSP90 inhibitors. Here, we extend the analysis of the HSP90 - FN interaction. The importance of the N-terminal 70-kDa fragment of fibronectin (FN70) and FN type I repeat was demonstrated by competition for FN binding between HSP90 and the functional upstream domain (FUD) of the Streptococcus pyogenes F1 adhesin protein. Furthermore, His-HSP90α mutations F352A and Y528A (alone and in combination) reduced the association with full-length FN (FN-FL) and FN70 in vitro. Unlike wild type His-HSP90α, these HSP90 mutants did not enhance FN matrix assembly in the Hs578T cell line model when added exogenously. Interestingly, the HSP90 E353A mutation, which did not significantly reduce the HSP90 - FN interaction in vitro, dramatically blocked FN matrix assembly in Hs578T cell-derived matrices. Taken together, these data extend our understanding of the role of HSP90 in FN fibrillogenesis and suggest that promotion of FN ECM assembly by HSP90 is not solely regulated by the affinity of the direct interaction between HSP90 and FN.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell Stress & ChaperonesPub Date : 2023-11-01Epub Date: 2023-10-24DOI: 10.1007/s12192-023-01386-1
Haotian Chen, Chen Chen, Yuhui Qin, Lei Wang, Jie Zheng, Fabao Gao
{"title":"Protective effects of epigallocatechin-3-gallate counteracting the chronic hypobaric hypoxia-induced myocardial injury in plain-grown rats at high altitude.","authors":"Haotian Chen, Chen Chen, Yuhui Qin, Lei Wang, Jie Zheng, Fabao Gao","doi":"10.1007/s12192-023-01386-1","DOIUrl":"10.1007/s12192-023-01386-1","url":null,"abstract":"<p><p>Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50157136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Ai, Dan Luo, Huailing Wang, Xiaoyu Liu, Min Yang, Fangfang Tian, Suofu Qin, Jie Liu, Yuying Li
{"title":"Ameliorative effects of Bifidobacterium longum peptide-1 on benzo(α)pyrene induced oxidative damages via daf-16 in Caenorhabditis elegans.","authors":"Ling Ai, Dan Luo, Huailing Wang, Xiaoyu Liu, Min Yang, Fangfang Tian, Suofu Qin, Jie Liu, Yuying Li","doi":"10.1007/s12192-023-01385-2","DOIUrl":"https://doi.org/10.1007/s12192-023-01385-2","url":null,"abstract":"<p><p>Oxidative stress is implicated in numerous diseases, with benzo(α)pyrene (BaP) known for causing substantial oxidative damage. Bifidobacterium longum (B. longum) is recognized as an antioxidant bacterium for certain hosts, yet its influence on oxidative damages instigated by BaP remains undetermined. In our study, we introduced various strains of Caenorhabditis elegans (C. elegans) to BaP to trigger oxidative stress, subsequently treating them with different forms of B. longum to evaluate its protective effects. Additionally, we explored the role of daf-16 in this context. Our findings indicated that in wild-type N2 C. elegans, B. longum-even in the form of inactivated bacteria or bacterial ultrasonic lysates (BULs)-significantly extended lifespan. BaP exposure notably decreased lifespan, superoxide dismutase (SOD) activity, and motility, while simultaneously down-regulating the expression of reactive oxygen species (ROS)-associated genes (sod-3, sek-1, cat-1) and daf-16 downstream genes (sod-3, ctl-2). However, it significantly increased the ROS level, malondialdehyde (MDA) content, and lipofuscin accumulation and up-regulated another daf-16 downstream gene (clk-1) (P <0.05). Interestingly, when further treated with B. longum peptide-1 (BLP-1), opposite effects were observed, and all the aforementioned indices changed significantly. In the case of RNAi (daf-16) C. elegans, BaP exposure significantly shortened the lifespan (P <0.05), which was only slightly prolonged upon further treatment with BLP-1. Furthermore, the expression of daf-16 downstream genes showed minor alterations in RNAi C. elegans upon treatment with either BaP or BLP-1. In conclusion, our findings suggest that B. longum acts as a probiotic for C. elegans. BLP-1 was shown to safeguard C. elegans from numerous oxidative damages induced by BaP, but these protective effects were contingent upon the daf-16 gene.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina Brockmöller, Thomas Seeger, Franz Worek, Simone Rothmiller
{"title":"Recombinant cellular model system for human muscle-type nicotinic acetylcholine receptor α1<sub>2</sub>β1δε.","authors":"Sabrina Brockmöller, Thomas Seeger, Franz Worek, Simone Rothmiller","doi":"10.1007/s12192-023-01395-0","DOIUrl":"https://doi.org/10.1007/s12192-023-01395-0","url":null,"abstract":"<p><p>The human muscle-type nicotinic acetylcholine receptor α1<sub>2</sub>β1δε (nAChR) is a complex transmembrane receptor needed for drug screening for disorders like congenital myasthenic syndromes and multiple pterygium syndrome. Until today, most models are still using the nAChR from Torpedo californica electric ray. A simple reproducible cellular system expressing functional human muscle-type nAChR is still missing. This study addressed this issue and further tested the hypothesis that different chaperones, both biological and chemical, and posttranslational modification supporting substances as well as hypothermic incubation are able to increase the nAChR yield. Therefore, Gibson cloning was used to generate transfer plasmids carrying the sequence of nAChR or chosen biological chaperones to support the nAChR folding in the cellular host. Viral transduction was used for stable integration of these transgenes in Chinese hamster ovary cells (CHO). Proteins were detected with Western blot, in-cell and on-cell Western, and the function of the receptor with voltage clamp analysis. We show that the internalization of nAChR into plasma membranes was sufficient for detection and function. Additional transgenic overexpression of biological chaperones did result in a reduced nAChR expression. Chemical chaperones, posttranslational modification supporting substances, and hypothermic conditions are well-suited supporting applications to increase the protein levels of different subunits. This study presents a stable and functional cell line that expresses human muscle-type nAChR and yields can be further increased using the chemical chaperone nicotine without affecting cell viability. The simplified access to this model system should enable numerous applications beyond drug development. GRAPHICAL ABSTRACT.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem cells alleviate OGD/R mediated stress response in PC12 cells following a co-culture: modulation of the apoptotic cascade through BDNF-TrkB signaling.","authors":"Harpreet Kaur, Deepaneeta Sarmah, Aishika Datta, Anupom Borah, Dileep R Yavagal, Pallab Bhattacharya","doi":"10.1007/s12192-022-01319-4","DOIUrl":"https://doi.org/10.1007/s12192-022-01319-4","url":null,"abstract":"<p><p>Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, including ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neuroprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxygen-glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor (BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic modality toward neuroprotection following hypoxic injury or stroke in clinical settings.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell Stress & ChaperonesPub Date : 2023-11-01Epub Date: 2023-08-29DOI: 10.1007/s12192-023-01373-6
Sercan Kaya, Tuba Yalcın
{"title":"In an experimental myocardial infarction model, L-arginine pre-intervention may exert cardioprotective effects by regulating OTULIN levels and mitochondrial dynamics.","authors":"Sercan Kaya, Tuba Yalcın","doi":"10.1007/s12192-023-01373-6","DOIUrl":"10.1007/s12192-023-01373-6","url":null,"abstract":"<p><p>The experimental myocardial infarction (MI) model originating from isoproterenol (ISO) is frequently preferred in research due to its similarity to MI-induced damage in humans. Beneficial effects of L-arginine (L-Arg), a semi-essential amino acid, in cardiovascular diseases have been shown in many studies. This study was carried out to determine whether L-Arg pre-intervention has protective effects on heart tissue in the experimental MI model. The 28 rats used in the study were randomly divided into 4 equal groups: control, L-Arg, ISO, and L-Arg+ISO. Upon completion of all applications, cardiac markers in serum and biochemical, histopathological, and immunohistochemical examinations in cardiac tissues were performed. Cardiac markers, histopathological changes, oxidative stress, inflammation, and apoptosis were increased in the experimental MI model. In addition, administration of ISO deregulated OTULIN levels and mitochondrial dynamics in heart tissue. However, L-Arg pre-intervention showed a significant protective effect against changes in ISO-induced MI. L-Arg supplementation with cardioprotective effect may reduce the risks of possible pathophysiological processes in MI.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10109968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of a prognostic model for lung adenocarcinoma based on heat shock protein-related genes and immune analysis.","authors":"Wangyan Zhou, Wei Zeng, Dayang Zheng, Xu Yang, Yongcheng Qing, Chunxiang Zhou, Xiang Liu","doi":"10.1007/s12192-023-01374-5","DOIUrl":"10.1007/s12192-023-01374-5","url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) represents a prevalent form of cancer, with low early diagnosis rates and high mortality rates, posing a global health challenge. Heat shock proteins (HSPs) assume a crucial role within the tumor immune microenvironment (TME) of LUAD. Here, a collection of 97 HSP-related genes (HSPGs) was assembled based on prior literature reports, of which 36 HSPGs were differentially expressed in LUAD. In The Cancer Genome Atlas (TCGA) cohort, we constructed a prognostic model for risk stratification and prognosis prediction by integrating 13 HSPGs. In addition, the prognostic significance and predictive efficacy of the HSP-related riskscore were examined and validated in the Gene Expression Omnibus (GEO) cohort. To facilitate the clinical use of this riskscore, we also established a nomogram scale by verifying its effectiveness through different methods. In light of these outcomes, we concluded a significant correlation between HSPs and TME in LUAD, and the riskscore can be a reliable prognostic indicator. Furthermore, this study evaluated the differences in immunophenoscore, tumor immune dysfunction and exclusion score, and sensitivity to several common chemotherapy drugs among LUAD individuals in different risk groups, which may aid in clinical decision-making for immune therapy and chemotherapy in LUAD individuals.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10193392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell Stress & ChaperonesPub Date : 2023-11-01Epub Date: 2023-07-18DOI: 10.1007/s12192-023-01360-x
Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Teresa Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra
{"title":"The beauty and complexity of the small heat shock proteins: a report on the proceedings of the fourth workshop on small heat shock proteins.","authors":"Heath Ecroyd, Britta Bartelt-Kirbach, Anat Ben-Zvi, Raffaella Bonavita, Yevheniia Bushman, Elena Casarotto, Ciro Cecconi, Wilson Chun Yu Lau, Jonathan D Hibshman, Joep Joosten, Virginia Kimonis, Rachel Klevit, Krzysztof Liberek, Kathryn A McMenimen, Tsukumi Miwa, Axel Mogk, Daniele Montepietra, Carsten Peters, Maria Teresa Rocchetti, Dominik Saman, Angela Sisto, Valentina Secco, Annika Strauch, Hideki Taguchi, Morgan Tanguay, Barbara Tedesco, Melinda E Toth, Zihao Wang, Justin L P Benesch, Serena Carra","doi":"10.1007/s12192-023-01360-x","DOIUrl":"10.1007/s12192-023-01360-x","url":null,"abstract":"<p><p>The Fourth Cell Stress Society International workshop on small heat shock proteins (sHSPs), a follow-up to successful workshops held in 2014, 2016 and 2018, took place as a virtual meeting on the 17-18 November 2022. The meeting was designed to provide an opportunity for those working on sHSPs to reconnect and discuss their latest work. The diversity of research in the sHSP field is reflected in the breadth of topics covered in the talks presented at this meeting. Here we summarise the presentations at this meeting and provide some perspectives on exciting future topics to be addressed in the field.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10204082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}