HSPA12A stimulates “Smurf1-Hif1α-aerobic glycolysis” axis to promote proliferation of renal tubular epithelial cells after hypoxia/reoxygenation injury

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Xinxu Min , Yunfan Li , Xiaojin Zhang , Shijiang Liu , Ziyang Chen , Qian Mao , Qiuyue Kong , Zhaohe Wang , Li Liu , Zhengnian Ding
{"title":"HSPA12A stimulates “Smurf1-Hif1α-aerobic glycolysis” axis to promote proliferation of renal tubular epithelial cells after hypoxia/reoxygenation injury","authors":"Xinxu Min ,&nbsp;Yunfan Li ,&nbsp;Xiaojin Zhang ,&nbsp;Shijiang Liu ,&nbsp;Ziyang Chen ,&nbsp;Qian Mao ,&nbsp;Qiuyue Kong ,&nbsp;Zhaohe Wang ,&nbsp;Li Liu ,&nbsp;Zhengnian Ding","doi":"10.1016/j.cstres.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Proliferation of renal tubular epithelial cells (TECs) is critical for the recovery after kidney ischemia/reperfusion (KI/R). However, there is still a lack of ideal therapies for promoting TEC proliferation. Heat shock protein A12A (HSPA12A) shows abundant expression in kidney in our previous studies. To investigate the role of HSPA12A in TEC proliferation after KI/R, an <em>in vitro</em> KI/R model was simulated by hypoxia (12 h) and reoxygenation (12 h) in human kidney tubular epithelial HK-2 cells. We found that, when hypoxia/reoxygenation (H/R) triggered HK-2 cell injury, HSPA12A expression was downregulated, and extracellular lactate, the readout of glycolysis, was also decreased. Loss and gain of functional studies showed that HSPA12A did not change cell viability after hypoxia but increased cell proliferation as well as glycolytic flux of HK-2 cells after H/R. When blocking glycolysis by 2-deoxy-D-glucose or oxamate, the HSPA12A promoted HK-2 cell proliferation was also abolished. Further analysis revealed that HSPA12A overexpression increased hypoxia-inducible factor 1α (Hif1α) protein expression and nuclear localization in HK-2 cells in response to H/R, whereas HSPA12A knockdown showed the opposite effects. Notably, pharmacological inhibition of Hif1α with YC-1 reversed the HSPA12A-induced increases of both glycolytic flux and proliferation of H/R HK-2 cells. Moreover, the HSPA12A increased Hif1α protein expression was not <em>via</em> upregulating its transcription but through increasing its protein stability in a Smurf1-dependent manner. The findings indicate that HSPA12A might serve as a promising target for TEC proliferation to help recovery after KI/R.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 5","pages":"Pages 681-695"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524001172","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proliferation of renal tubular epithelial cells (TECs) is critical for the recovery after kidney ischemia/reperfusion (KI/R). However, there is still a lack of ideal therapies for promoting TEC proliferation. Heat shock protein A12A (HSPA12A) shows abundant expression in kidney in our previous studies. To investigate the role of HSPA12A in TEC proliferation after KI/R, an in vitro KI/R model was simulated by hypoxia (12 h) and reoxygenation (12 h) in human kidney tubular epithelial HK-2 cells. We found that, when hypoxia/reoxygenation (H/R) triggered HK-2 cell injury, HSPA12A expression was downregulated, and extracellular lactate, the readout of glycolysis, was also decreased. Loss and gain of functional studies showed that HSPA12A did not change cell viability after hypoxia but increased cell proliferation as well as glycolytic flux of HK-2 cells after H/R. When blocking glycolysis by 2-deoxy-D-glucose or oxamate, the HSPA12A promoted HK-2 cell proliferation was also abolished. Further analysis revealed that HSPA12A overexpression increased hypoxia-inducible factor 1α (Hif1α) protein expression and nuclear localization in HK-2 cells in response to H/R, whereas HSPA12A knockdown showed the opposite effects. Notably, pharmacological inhibition of Hif1α with YC-1 reversed the HSPA12A-induced increases of both glycolytic flux and proliferation of H/R HK-2 cells. Moreover, the HSPA12A increased Hif1α protein expression was not via upregulating its transcription but through increasing its protein stability in a Smurf1-dependent manner. The findings indicate that HSPA12A might serve as a promising target for TEC proliferation to help recovery after KI/R.
缺氧/复氧损伤后,HSPA12A刺激 "Smurf1-Hif1α-有氧糖酵解 "轴,促进肾小管上皮细胞增殖。
肾小管上皮细胞(TEC)的增殖对肾脏缺血/再灌注(KI/R)后的恢复至关重要。然而,目前仍缺乏促进肾小管上皮细胞增殖的理想疗法。在我们之前的研究中,热休克蛋白 A12A(HSPA12A)在肾脏中大量表达。为了研究 HSPA12A 在 KI/R 后 TEC 增殖中的作用,我们在人肾小管上皮 HK-2 细胞中模拟了缺氧(12 小时)和复氧(12 小时)的体外 KI/R 模型。我们发现,当缺氧/复氧(H/R)引发 HK-2 细胞损伤时,HSPA12A 的表达下调,细胞外乳酸(糖酵解的读出物)也减少。功能缺失和功能增益研究表明,HSPA12A 不会改变缺氧后的细胞存活率,但会增加 H/R 后 HK-2 细胞的细胞增殖和糖酵解通量。当用 2-DG 或 Oxamate 阻断糖酵解时,HSPA12A 促进 HK-2 细胞增殖的作用也被取消。进一步的分析表明,HSPA12A的过表达增加了Hif1α蛋白在HK-2细胞中对H/R反应的表达和核定位,而HSPA12A的敲除则显示出相反的效应。值得注意的是,用YC-1药理抑制Hif1α可逆转HSPA12A诱导的H/R HK-2细胞糖酵解通量和增殖的增加。此外,HSPA12A 增加 Hif1α 蛋白表达不是通过上调其转录,而是以 Smurf1 依赖性方式增加其蛋白稳定性。研究结果表明,HSPA12A可能是TEC增殖的一个有希望的靶点,有助于KI/R后的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Stress & Chaperones
Cell Stress & Chaperones 生物-细胞生物学
CiteScore
7.60
自引率
2.60%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信