Cigdem Cicek , Pelin Telkoparan-Akillilar , Semra Sertyel , Cumhur Bilgi , Osman Denizhan Ozgun
{"title":"将内质网应激调节伴侣作为特发性非梗阻性无精子症生物标志物的研究。","authors":"Cigdem Cicek , Pelin Telkoparan-Akillilar , Semra Sertyel , Cumhur Bilgi , Osman Denizhan Ozgun","doi":"10.1016/j.cstres.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is a deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of ER stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients in each group. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1, protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic nonobstructive azoospermia and a control group of noninfertile males. Serum PDIA1 (<em>P</em> = 0.0004), MANF (<em>P</em> = 0.018), PDIA3 (<em>P</em> < 0.0001), GRP78 (<em>P</em> = 0.0027), and CRT (<em>P</em> = 0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions, including azoospermia.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524001159/pdfft?md5=84713038e695926d42b7593588ba33b6&pid=1-s2.0-S1355814524001159-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of endoplasmic reticulum stress-regulated chaperones as biomarkers in idiopathic nonobstructive azoospermia\",\"authors\":\"Cigdem Cicek , Pelin Telkoparan-Akillilar , Semra Sertyel , Cumhur Bilgi , Osman Denizhan Ozgun\",\"doi\":\"10.1016/j.cstres.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is a deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of ER stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients in each group. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1, protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic nonobstructive azoospermia and a control group of noninfertile males. Serum PDIA1 (<em>P</em> = 0.0004), MANF (<em>P</em> = 0.018), PDIA3 (<em>P</em> < 0.0001), GRP78 (<em>P</em> = 0.0027), and CRT (<em>P</em> = 0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions, including azoospermia.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355814524001159/pdfft?md5=84713038e695926d42b7593588ba33b6&pid=1-s2.0-S1355814524001159-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814524001159\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524001159","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation of endoplasmic reticulum stress-regulated chaperones as biomarkers in idiopathic nonobstructive azoospermia
Azoospermia is a condition in which sperm cells are completely absent in a male's ejaculate. Typically, sperm production occurs in the testes and is regulated by a complex series of cellular and molecular interactions. Endoplasmic reticulum (ER) stress arises when there is a deviation from or damage to the normal functions of the ER within cells. In response to this stress, a cascade of response mechanisms is activated to regulate ER stress within cells. This study aims to investigate the role of ER stress-regulated chaperones as potential biomarkers in male infertility. ER stress associated with azoospermia can manifest in cells such as spermatogonia in the testes and can impact sperm production. As a result of ER stress, the expression and activity of a variety of proteins within cells can be altered. Among these proteins are chaperone proteins that regulate the ER stress response. The sample size was calculated to be a minimum of 36 patients in each group. In this preliminary study, we measured and compared serum levels of protein disulfide-isomerase A1, protein disulfide-isomerase A3 (PDIA3), mesencephalic astrocyte-derived neurotrophic factor (MANF), glucose regulatory protein 78 (GRP78), clusterin (CLU), calreticulin (CRT), and calnexin (CNX) between male subjects with idiopathic nonobstructive azoospermia and a control group of noninfertile males. Serum PDIA1 (P = 0.0004), MANF (P = 0.018), PDIA3 (P < 0.0001), GRP78 (P = 0.0027), and CRT (P = 0.0009) levels were higher in the infertile group compared to the control. In summary, this study presents novel findings in a cohort of male infertile patients, emphasizing the significance of incorporating diverse biomarkers. It underscores the promising role of ER stress-regulated proteins as potential serum indicators for male infertility. By elucidating the impact of ER stress on spermatogenic cells, the research illuminates the maintenance or disruption of cellular health. A deeper understanding of these results could open the door to novel treatment approaches for reproductive conditions, including azoospermia.