Ryan A. Dunn , Hui-Ying Luk , Casey R. Appell , Nigel C. Jiwan , Marcos S. Keefe , Jan-Joseph S. Rolloque , Yasuki Sekiguchi
{"title":"Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure","authors":"Ryan A. Dunn , Hui-Ying Luk , Casey R. Appell , Nigel C. Jiwan , Marcos S. Keefe , Jan-Joseph S. Rolloque , Yasuki Sekiguchi","doi":"10.1016/j.cstres.2024.05.001","DOIUrl":"10.1016/j.cstres.2024.05.001","url":null,"abstract":"<div><p>Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [T<sub>amb</sub>], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (T<sub>amb</sub>, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (Flat<sub>HEAT</sub> [T<sub>amb</sub>, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (T<sub>rec</sub>) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-Flat<sub>HEAT</sub> and post-Flat<sub>HEAT</sub>. Mean T<sub>rec</sub> during Flat<sub>HEAT</sub> between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (<em>P</em> = 0.68), with no mean heart rate differences during Flat<sub>HEAT</sub> between hot (172 ± 15 beats min<sup>−1</sup>) and thermoneutral conditions (174 ± 8 beats min<sup>−1</sup>; <em>P</em> = 0.58). Hsp72 concentration change from baseline to immediately pre-Flat<sub>HEAT</sub> was significantly lower in hot (−51.4%) compared to thermoneutral (+24.2%; <em>P</em> = 0.025) DHR, with Hsp72 change from baseline to immediately post-Flat<sub>HEAT</sub> also lower in hot (−52.6%) compared to thermoneutral conditions (+26.3%; <em>P</em> = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 472-482"},"PeriodicalIF":3.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000737/pdfft?md5=7527cb8830b42a0ea4d640a6302a437a&pid=1-s2.0-S1355814524000737-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin J. Lang , Kristina M. Holton , Martin E. Guerrero-Gimenez , Yuka Okusha , Patrick T. Magahis , Amy Shi , Mary Neguse , Shreya Venkatesh , Anh M. Nhu , Jason E. Gestwicki , Stuart K. Calderwood
{"title":"Heat shock protein 72 supports extracellular matrix production in metastatic mammary tumors","authors":"Benjamin J. Lang , Kristina M. Holton , Martin E. Guerrero-Gimenez , Yuka Okusha , Patrick T. Magahis , Amy Shi , Mary Neguse , Shreya Venkatesh , Anh M. Nhu , Jason E. Gestwicki , Stuart K. Calderwood","doi":"10.1016/j.cstres.2024.04.006","DOIUrl":"10.1016/j.cstres.2024.04.006","url":null,"abstract":"<div><p>This study identified tumorigenic processes most dependent on murine heat shock protein 72 (HSP72) in the mouse mammary tumor virus-PyMT mammary tumor model, which give rise to spontaneous mammary tumors that exhibit HSP72-dependent metastasis to the lung. RNA-seq expression profiling of <em>Hspa1a/Hspa1b (Hsp72)</em> WT and <em>Hsp72</em><sup>−/−</sup> primary mammary tumors discovered significantly lower expression of genes encoding components of the extracellular matrix (ECM) in <em>Hsp72</em> knockout mammary tumors compared to WT controls. <em>In vitro</em> studies found that genetic or chemical inhibition of HSP72 activity in cultured collagen-expressing human or murine cells also reduces mRNA and protein levels of COL1A1 and several other ECM-encoding genes. In search of a possible mechanistic basis for this relationship, we found HSP72 to support the activation of the tumor growth factor-β–suppressor of mothers against decapentaplegic-3 signaling pathway and evidence of suppressor of mothers against decapentaplegic-3 and HSP72 coprecipitation, suggesting potential complex formation. Human <em>COL1A1</em> mRNA expression was found to have prognostic value for HER2+ breast tumors over other breast cancer subtypes, suggesting a possible human disease context where targeting HSP72 may have a therapeutic rationale. Analysis of human HER2+ breast tumor gene expression data using a gene set comprising ECM-related gene and protein folding-related gene as an input to the statistical learning algorithm, <em>Galgo</em>, found a subset of these genes that can collectively stratify patients by relapse-free survival, further suggesting a potential interplay between the ECM and protein-folding genes may contribute to tumor progression.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 456-471"},"PeriodicalIF":3.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000725/pdfft?md5=d45a8b83fdfc70c0e9683647429bc4ef&pid=1-s2.0-S1355814524000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140862272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baihui Song , Gaoyuan Zhang , Yitegele Bao , Mohan Zhang
{"title":"Involvement of oxidative stress-AMPK-Cx43-NLRP3 pathway in extracellular matrix remodeling of gastric smooth muscle cells in rats with diabetic gastroparesis","authors":"Baihui Song , Gaoyuan Zhang , Yitegele Bao , Mohan Zhang","doi":"10.1016/j.cstres.2024.04.005","DOIUrl":"10.1016/j.cstres.2024.04.005","url":null,"abstract":"<div><p>This study aimed to investigate the changes in oxidative stress, adenosine monophosphate-activated protein kinase (AMPK), connexin43 (Cx43), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression, and extracellular matrix (ECM) in the gastric smooth muscle tissues of rats with diabetic gastroparesis (DGP) and high glucose-cultured gastric smooth muscle cells, determine the existence of oxidative stress-AMPK-Cx43-NLRP3 pathway under high glucose condition, and the involvement of this pathway in ECM remodeling in DGP rats. The results showed that with increasing duration of diabetes, oxidation stress levels gradually increased, the AMPK activity decreased first and then increased, NLRP3, CX43 expression, and membrane/cytoplasm ratio of Cx43 expression were increased in the gastric smooth muscle tissues of diabetic rats. Changes in ECM of gastric smooth muscle cells were observed in DGP rats. The DGP group showed higher collagen type I content, increased expression of Caspase-1, transforming growth factor-beta 3 (TGF-β<sub>3</sub>), and matrix metalloproteinase-2 (MMP-2), decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) expression, and higher interleukin-1 beta content when compared with the control group. For gastric smooth muscle cells cultured under higher glucose, the MMP-2 and TGF-β3 expression was decreased, TGF-β1 and TIMP-1 expression was increased, the interleukin-1 beta content was decreased in cells after inhibition of NLRP3 expression; the NLRP3 and Caspase-1 expression was decreased, and adenosine triphosphate content was lower after inhibition of Cx43; the expression of NLRP3, Caspase-1, P2X7, and the membrane/cytoplasm ratio of CX43 expression was decreased in cells after inhibition of AMPK and oxidative stress, the phospho-AMPK expression was also decreased after suppressing oxidative stress. Our findings suggest that high glucose induced the activation of the AMPK-Cx43-NLRP3 pathway through oxidative stress, and this pathway was involved in the ECM remodeling of gastric smooth muscles in DGP rats by regulating the biological functions of TGF-β3, TGF-β1, MMP-2, and TIMP-1.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 440-455"},"PeriodicalIF":3.8,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000671/pdfft?md5=3aef01b0be0970ec7d167ee34824f45a&pid=1-s2.0-S1355814524000671-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hsf1 and Hsf2 in normal, healthy human tissues: Immunohistochemistry provokes new questions","authors":"Matthias P. Mayer","doi":"10.1016/j.cstres.2024.04.004","DOIUrl":"10.1016/j.cstres.2024.04.004","url":null,"abstract":"<div><p>The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen <em>et al.</em> present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 437-439"},"PeriodicalIF":3.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135581452400066X/pdfft?md5=bef01fbfd2609f874f7ee7b3dc68c9f7&pid=1-s2.0-S135581452400066X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140789822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clinton J. Belott , Oleg A. Gusev , Takahiro Kikawada , Michael A. Menze
{"title":"Membraneless and membrane-bound organelles in an anhydrobiotic cell line are protected from desiccation-induced damage","authors":"Clinton J. Belott , Oleg A. Gusev , Takahiro Kikawada , Michael A. Menze","doi":"10.1016/j.cstres.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.04.002","url":null,"abstract":"<div><p>Anhydrobiotic species can survive virtually complete water loss by entering a reversible ametabolic glassy state that may persist for years in ambient conditions. The Pv11 cell line was derived from the egg mass of the anhydrobiotic midge, <em>Polypedilum vanderplanki</em>, and is currently the only available anhydrobiotic cell line. Our results demonstrate that the necessary preconditioning for Pv11 cells to enter anhydrobiosis causes autophagy and reduces mitochondrial respiration by over 70%. We speculate that reorganizing cellular bioenergetics to create and conserve energy stores may be valuable to successfully recover after rehydration. Furthermore, mitochondria in preconditioned cells lose their membrane potential during desiccation but rapidly restore it within 30 min upon rehydration, demonstrating that the inner mitochondrial membrane integrity is well-preserved. Strikingly, the nucleolus remains visible immediately upon rehydration in preconditioned cells while absent in control cells. In contrast, a preconditioning-induced membraneless organelle reformed after rehydration, demonstrating that membraneless organelles in Pv11 cells can be either stabilized or recovered. Staining the endoplasmic reticulum and the Golgi apparatus revealed that these organelles fragment during preconditioning. We hypothesize that this process reduces sheering stress caused by rapid changes in cellular volume during desiccation and rehydration. Additionally, preconditioning was found to cause the filamentous-actin (F-actin) network to disassemble significantly and reduce the fusion of adjacent plasma membranes. This study offers several exciting avenues for future studies in the animal model and Pv11 cell line that will further our understanding of anhydrobiosis and may lead to advancements in storing sensitive biologics at ambient temperatures for months or years.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 425-436"},"PeriodicalIF":3.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000646/pdfft?md5=f0cb2e4d4f49fb9347b1ec3dbcd12461&pid=1-s2.0-S1355814524000646-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bideep Shrestha , Anni I. Nieminen , Olli Matilainen
{"title":"Loss of the histone chaperone UNC-85/ASF1 inhibits the epigenome-mediated longevity and modulates the activity of one-carbon metabolism","authors":"Bideep Shrestha , Anni I. Nieminen , Olli Matilainen","doi":"10.1016/j.cstres.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.04.003","url":null,"abstract":"<div><p>Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism <em>Caenorhabditis elegans</em> to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase <em>ash-2</em> does not extend the lifespan of <em>unc-85</em> mutants. In this context, we found that the longevity-promoting <em>ash-2</em> RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component <em>dao-3</em>/<em>MTHFD2</em> partially rescues the short lifespan of <em>unc-85</em> mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 392-403"},"PeriodicalIF":3.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000658/pdfft?md5=d32243477ea21056adfa8f117b7cde58&pid=1-s2.0-S1355814524000658-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Camara , Heerak Chugh , Alyssa George , Lukas Dolidze , Kevin Ryu , Katrina J. Holly , Daniel P. Flaherty , Seema Mattoo
{"title":"Discovery and validation of a novel inhibitor of HYPE-mediated AMPylation","authors":"Ali Camara , Heerak Chugh , Alyssa George , Lukas Dolidze , Kevin Ryu , Katrina J. Holly , Daniel P. Flaherty , Seema Mattoo","doi":"10.1016/j.cstres.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.04.001","url":null,"abstract":"<div><p>Adenosyl monophosphate (AMP)ylation (the covalent transfer of an AMP from Adenosine Triphosphate (ATP) onto a target protein) is catalyzed by the human enzyme Huntingtin Yeast Interacting Partner E (HYPE)/FicD to regulate its substrate, the heat shock chaperone binding immunoglobulin protein (BiP). HYPE-mediated AMPylation of BiP is critical for maintaining proteostasis in the endoplasmic reticulum and mounting a unfolded protein response in times of proteostatic imbalance. Thus, manipulating HYPE’s enzymatic activity is a key therapeutic strategy toward the treatment of various protein misfolding diseases, including neuropathy and early-onset diabetes associated with two recently identified clinical mutations of HYPE. Herein, we present an optimized, fluorescence polarization-based, high-throughput screening (HTS) assay to discover activators and inhibitors of HYPE-mediated AMPylation. After challenging our HTS assay with over 30,000 compounds, we discovered a novel AMPylase inhibitor, I2.10. We also determined a low micromolar IC50 for I2.10 and employed biorthogonal counter-screens to validate its efficacy against HYPE’s AMPylation of BiP. Further, we report low cytotoxicity of I2.10 on human cell lines. We thus established an optimized, high-quality HTS assay amenable to tracking HYPE’s enzymatic activity at scale, and provided the first novel small-molecule inhibitor capable of perturbing HYPE-directed AMPylation of BiP <em>in vitro</em>. Our HTS assay and I2.10 compound serve as a platform for further development of HYPE-specific small-molecule therapeutics.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 404-424"},"PeriodicalIF":3.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000634/pdfft?md5=5911a65888b992c1e98a5c34c57cba1f&pid=1-s2.0-S1355814524000634-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Meng , Zhenzhen Hu , Chenyi Zhang , Hao Bai , Zhaoping Li , Xinru Guo , Liyong Chen
{"title":"miR-92a-3p regulates ethanol-induced apoptosis in H9c2 cardiomyocytes","authors":"Yan Meng , Zhenzhen Hu , Chenyi Zhang , Hao Bai , Zhaoping Li , Xinru Guo , Liyong Chen","doi":"10.1016/j.cstres.2024.03.009","DOIUrl":"https://doi.org/10.1016/j.cstres.2024.03.009","url":null,"abstract":"<div><p>The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V–fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (<em>P</em> < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 3","pages":"Pages 381-391"},"PeriodicalIF":3.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000610/pdfft?md5=4b6d513bfaa64c78cfbb479e78b60d49&pid=1-s2.0-S1355814524000610-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanveer Ahmad , Bushra A. Alhammadi , Shaikha Y. Almaazmi , Sahar Arafa , Gregory L. Blatch , Tanima Dutta , Jason E. Gestwicki , Robert A. Keyzers , Addmore Shonhai , Harpreet Singh
{"title":"Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update","authors":"Tanveer Ahmad , Bushra A. Alhammadi , Shaikha Y. Almaazmi , Sahar Arafa , Gregory L. Blatch , Tanima Dutta , Jason E. Gestwicki , Robert A. Keyzers , Addmore Shonhai , Harpreet Singh","doi":"10.1016/j.cstres.2024.03.007","DOIUrl":"10.1016/j.cstres.2024.03.007","url":null,"abstract":"<div><p>Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of <em>Plasmodium falciparum</em>. Heat shock proteins (HSPs), particularly <em>P. falciparum</em> HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host–parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein–protein interactions crucial for malaria parasite survival and pathogenesis.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 326-337"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000592/pdfft?md5=da108f138aaca73d689e40be490fca6e&pid=1-s2.0-S1355814524000592-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140189452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clare K. Melchiorre , Matthew D. Lynes , Sadikshya Bhandari , Sheng-Chiang Su , Christian M. Potts , Amy V. Thees , Carol E. Norris , Lucy Liaw , Yu-Hua Tseng , Michael A. Lynes
{"title":"Extracellular metallothionein as a therapeutic target in the early progression of type 1 diabetes","authors":"Clare K. Melchiorre , Matthew D. Lynes , Sadikshya Bhandari , Sheng-Chiang Su , Christian M. Potts , Amy V. Thees , Carol E. Norris , Lucy Liaw , Yu-Hua Tseng , Michael A. Lynes","doi":"10.1016/j.cstres.2024.03.005","DOIUrl":"10.1016/j.cstres.2024.03.005","url":null,"abstract":"<div><p>Type 1 diabetes (T1D) is characterized by lymphocyte infiltration into the pancreatic islets of Langerhans, leading to the destruction of insulin-producing beta cells and uncontrolled hyperglycemia. In the nonobese diabetic (NOD) murine model of T1D, the onset of this infiltration starts several weeks before glucose dysregulation and overt diabetes. Recruitment of immune cells to the islets is mediated by several chemotactic cytokines, including CXCL10, while other cytokines, including SDF-1α, can confer protective effects. Global gene expression studies of the pancreas from prediabetic NOD mice and single-cell sequence analysis of human islets from prediabetic, autoantibody-positive patients showed an increased expression of metallothionein (MT), a small molecular weight, cysteine-rich metal-binding stress response protein. We have shown that beta cells can release MT into the extracellular environment, which can subsequently enhance the chemotactic response of Th1 cells to CXCL10 and interfere with the chemotactic response of Th2 cells to SDF-1α. These effects can be blocked <em>in vitro</em> with a monoclonal anti-MT antibody, clone UC1MT. When administered to NOD mice before the onset of diabetes, UC1MT significantly reduces the development of T1D. Manipulation of extracellular MT may be an important approach to preserving beta cell function and preventing the development of T1D.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 312-325"},"PeriodicalIF":3.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000579/pdfft?md5=8f8a25f3c455a22914b8fd930aacb052&pid=1-s2.0-S1355814524000579-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}