Tanveer Ahmad , Bushra A. Alhammadi , Shaikha Y. Almaazmi , Sahar Arafa , Gregory L. Blatch , Tanima Dutta , Jason E. Gestwicki , Robert A. Keyzers , Addmore Shonhai , Harpreet Singh
{"title":"作为抗疟疾药物靶点的恶性疟原虫热休克蛋白:最新进展。","authors":"Tanveer Ahmad , Bushra A. Alhammadi , Shaikha Y. Almaazmi , Sahar Arafa , Gregory L. Blatch , Tanima Dutta , Jason E. Gestwicki , Robert A. Keyzers , Addmore Shonhai , Harpreet Singh","doi":"10.1016/j.cstres.2024.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of <em>Plasmodium falciparum</em>. Heat shock proteins (HSPs), particularly <em>P. falciparum</em> HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host–parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein–protein interactions crucial for malaria parasite survival and pathogenesis.</p></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"29 2","pages":"Pages 326-337"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000592/pdfft?md5=da108f138aaca73d689e40be490fca6e&pid=1-s2.0-S1355814524000592-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update\",\"authors\":\"Tanveer Ahmad , Bushra A. Alhammadi , Shaikha Y. Almaazmi , Sahar Arafa , Gregory L. Blatch , Tanima Dutta , Jason E. Gestwicki , Robert A. Keyzers , Addmore Shonhai , Harpreet Singh\",\"doi\":\"10.1016/j.cstres.2024.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of <em>Plasmodium falciparum</em>. Heat shock proteins (HSPs), particularly <em>P. falciparum</em> HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host–parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein–protein interactions crucial for malaria parasite survival and pathogenesis.</p></div>\",\"PeriodicalId\":9684,\"journal\":{\"name\":\"Cell Stress & Chaperones\",\"volume\":\"29 2\",\"pages\":\"Pages 326-337\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000592/pdfft?md5=da108f138aaca73d689e40be490fca6e&pid=1-s2.0-S1355814524000592-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress & Chaperones\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000592\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000592","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host–parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein–protein interactions crucial for malaria parasite survival and pathogenesis.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.