Henri-Corto Stoeklé, Achille Ivasilevitch, Geneviève Marignac, Christian Hervé
{"title":"Creation and use of organoids in biomedical research and healthcare: the bioethical and metabioethical issues.","authors":"Henri-Corto Stoeklé, Achille Ivasilevitch, Geneviève Marignac, Christian Hervé","doi":"10.1080/19336918.2021.1996749","DOIUrl":"https://doi.org/10.1080/19336918.2021.1996749","url":null,"abstract":"<p><p>In the field of bioethics, scientific articles have already been published, and have highlighted relatively pluralist reflections concerning the creation and use of organoids. This plurality, rather than simply reflecting the complexity of the subject, may also be a consequence of the multiple theoretical and practical frameworks applied. Moreover, the creation and use of organoids in biomedical research and healthcare is probably in its infancy. This phenomenon is likely to increase in amplitude. Bioethics may be able to provide it with an effective and pertinent moral meaning, provided that a veritable metabioethical reflection is developed in parallel, that is, a reflection on bioethics itself, to provide scientists and clinicians with the best possible assistance in their everyday practice.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"15 1","pages":"285-294"},"PeriodicalIF":3.2,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39566397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.","authors":"Yusuke Mizutani, Daisuke Omagari, Manabu Hayatsu, Masaaki Nameta, Kazuo Komiyama, Yoshikazu Mikami, Tatsuo Ushiki","doi":"10.1080/19336918.2020.1829264","DOIUrl":"https://doi.org/10.1080/19336918.2020.1829264","url":null,"abstract":"<p><p>To elucidate the underlying mechanism of secretory leukocyte protease inhibitor (SLPI)-induced cell migration, we compared SLPI-deleted human gingival carcinoma Ca9-22 (ΔSLPI) cells and original (wild-type: wt) Ca9-22 cells using several microscopic imaging methods and gene expression analysis. Our results indicated reduced migration of ΔSLPI cells compared to wtCa9-22 cells. The lamellipodia/dorsal ruffles were smaller and moved slower in ΔSLPI cells compared to wtCa9-22 cells. Furthermore, well-developed intermediate filament bundles were observed at the desmosome junction of ΔSLPI cells. In addition, <i>Galectin4</i> was strongly expressed in ΔSLPI cells, and its forced expression suppressed migration of wtCa9-22 cells. Taken together, SLPI facilitates cell migration by regulating lamellipodia/ruffles and desmosomes, in which Galectin4 plays an important role.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"195-203"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1829264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38453883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The focal adhesion protein Integrin-Linked Kinase (ILK) as an important player in breast cancer pathogenesis.","authors":"Katerina Tsirtsaki, Vasiliki Gkretsi","doi":"10.1080/19336918.2020.1829263","DOIUrl":"https://doi.org/10.1080/19336918.2020.1829263","url":null,"abstract":"<p><p>Cell-extracellular matrix interactions, or focal adhesions (FA), are crucial for tissue homeostasis but are also implicated in cancer. Integrin-Linked Kinase (ILK) is an abundantly expressed FA protein involved in multiple signaling pathways. Here, we reviewed the current literature on the role of ILK in breast cancer (BC). Articles included in vitro and in vivo experiments as well as studies in human BC samples. ILK attenuation via silencing or pharmaceutical inhibition, leads to apoptosis or inhibition of epithelial-to-mesenchymal transition, and cell invasion whereas ILK overexpression suppresses anoikis and promotes tumor growth and metastasis. Finally, ILK is upregulated in BC tumors and its expression is associated with grade, and metastasis. Therefore, ILK should be evaluated as a potential anti-cancer pharmaceutical target.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"204-213"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1829263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38478130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Sun, Xiaona Zhou, Yanmeng Li, Wei Chen, Shanna Wu, Bei Zhang, Jingyi Yao, Anjian Xu
{"title":"KLF5 regulates epithelial-mesenchymal transition of liver cancer cells in the context of p53 loss through miR-192 targeting of ZEB2.","authors":"Lan Sun, Xiaona Zhou, Yanmeng Li, Wei Chen, Shanna Wu, Bei Zhang, Jingyi Yao, Anjian Xu","doi":"10.1080/19336918.2020.1826216","DOIUrl":"https://doi.org/10.1080/19336918.2020.1826216","url":null,"abstract":"<p><p>Krüppel-like factor 5 (KLF5) can both promote and suppress cell migration, but the underlying mechanisms have not been elucidated. In this study, we show that the function of KLF5 in epithelial-mesenchymal transition (EMT) and migration of liver cancer cells depends on the status of the cellular tumor antigen p53 (p53). Furthermore, zinc finger E-box-binding homeobox 2 (ZEB2) is the main regulator of KLF5 in EMT in liver cancer cells in the context of p53 loss. Most importantly, the regulation of ZEB2 by p53 and KLF5 is indirect and that miR-192 mediates this regulation. Finally, we find that in invasive liver cancer, KLF5 is absent in the context of p53 loss or mutation.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"182-194"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1826216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38507019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Gonzalez-Andrades, Supriya S Jalimarada, Maria Rodriguez-Benavente, Marissa N Feeley, Ashley M Woodward, Dina B AbuSamra, Pablo Argüeso
{"title":"Golgi α1,2-mannosidase I induces clustering and compartmentalization of CD147 during epithelial cell migration.","authors":"Miguel Gonzalez-Andrades, Supriya S Jalimarada, Maria Rodriguez-Benavente, Marissa N Feeley, Ashley M Woodward, Dina B AbuSamra, Pablo Argüeso","doi":"10.1080/19336918.2020.1764170","DOIUrl":"10.1080/19336918.2020.1764170","url":null,"abstract":"<p><p>CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"96-105"},"PeriodicalIF":3.3,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37946691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The functions of kinesin and kinesin-related proteins in eukaryotes.","authors":"Iftikhar Ali, Wei-Cai Yang","doi":"10.1080/19336918.2020.1810939","DOIUrl":"https://doi.org/10.1080/19336918.2020.1810939","url":null,"abstract":"<p><p>Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"139-152"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1810939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38402777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xing Lei, Bin Liu, Hao Wu, Xiao Wu, Xiu-Li Wang, Yue Song, Shuai-Shuai Zhang, Jun-Qin Li, Long Bi, Guo-Xian Pei
{"title":"The effect of fluid shear stress on fibroblasts and stem cells on plane and groove topographies.","authors":"Xing Lei, Bin Liu, Hao Wu, Xiao Wu, Xiu-Li Wang, Yue Song, Shuai-Shuai Zhang, Jun-Qin Li, Long Bi, Guo-Xian Pei","doi":"10.1080/19336918.2020.1713532","DOIUrl":"https://doi.org/10.1080/19336918.2020.1713532","url":null,"abstract":"<p><p>In this study, we aimed to study the effect of fluid shear stress on fibroblasts and BMSCs on plane and groove topographies. The results showed that 0.6-Hz stress had the greatest influence on the alignment, polarity, migration and adhesion of fibroblasts on plane by increasing the expression of reoriented actin and vinculin; whereas 1.0-Hz stress promoted differentiation of fibroblasts into myofibroblasts by increasing Col-I and α-SMA expression. Interestingly, under the given frequency stress, the groove structure strengthened the above characteristics of fibroblasts beyond adhesion, and promoted differentiation of BMSCs into myofibroblasts. The above results indicate that 0.6 Hz may improve the implant-tissue sealing, while 1.0-Hz stress probably causes the disordered fiber deposition around implants.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"12-23"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1713532","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37548019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EpCAM-claudin-tetraspanin-modulated ovarian cancer progression and drug resistance.","authors":"Zehra Tavsan, Hülya Ayar Kayalı","doi":"10.1080/19336918.2020.1732761","DOIUrl":"https://doi.org/10.1080/19336918.2020.1732761","url":null,"abstract":"ABSTRACT Alterations of cell adhesion are involved in cancer progression, but the mechanisms underlying the progression and cell adhesion have remained poorly understood. Focusing on the complex between EpCAM, claudins and tetraspanins, we described a sequence of events by which of the molecules associate each other in ovarian cancer. The interactions between molecules were evaluated by immunoprecipitations and then immunoblotting. To identify the effects of complex formation on the ovarian cancer progression, the different types of ovarian cancer cell lines were compared. In this study, we report the identification of the EpCAM-claudin-4 or −7-CD82 complex in the ovarian cancer progression and metastasis in vitro. Additionally, we demonstrated palmitoylation and intra- or extra-cellular regions are critically required for the complex formation. These results represent the first direct evidence for the link between the dynamism of cell adhesion molecules and ovarian cancer progression.","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"57-68"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1732761","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37671733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-term <i>ex-vivo</i> exposure to hydrogen sulfide enhances murine hematopoietic stem and progenitor cell migration, homing, and proliferation.","authors":"Anoushka Khanna, Namita Indracanti, Rina Chakrabarti, Prem Kumar Indraganti","doi":"10.1080/19336918.2020.1842131","DOIUrl":"10.1080/19336918.2020.1842131","url":null,"abstract":"<p><p>For successful transplantation of Hematopoietic Stem cells (HSCs), it is quite necessary that efficient homing, engraftment and retention of HSC self-renewal capacity takes place, which is often restricted due to inadequate number of adult HSCs. Here, we report that short-term <i>ex-vivo</i> treatment of mouse bone marrow mononuclear cells (BMMNCs) to Sodium Hydrogen Sulfide (NaHS, hydrogen sulfide-H<sub>2</sub>S donor) can be used as a possible strategy to overcome such hurdle. H<sub>2</sub>S increases the expression of CXCR4 on HSPCs, enhancing their migration toward SDF-1α in-vitro and thus homing to BM niche. . Additionally, <i>in-vitro</i> studies revealed that H<sub>2</sub>S has a role in activating mitochondria, thus, pushing quiescent HSCs into division. These results suggest a readily available and cost-effective method to facilitate efficient HSC transplantation.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"214-226"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1842131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38659480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The anti-cancer properties of heparin and its derivatives: a review and prospect.","authors":"Sai-Nan Ma, Zhi-Xiang Mao, Yang Wu, Ming-Xing Liang, Dan-Dan Wang, Xiu Chen, Ping-An Chang, Wei Zhang, Jin-Hai Tang","doi":"10.1080/19336918.2020.1767489","DOIUrl":"https://doi.org/10.1080/19336918.2020.1767489","url":null,"abstract":"<p><p>Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin's role in inhibiting cancer progression, making it a promising anti-cancer agent.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"118-128"},"PeriodicalIF":3.2,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1767489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38046532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}