Miguel Gonzalez-Andrades, Supriya S Jalimarada, Maria Rodriguez-Benavente, Marissa N Feeley, Ashley M Woodward, Dina B AbuSamra, Pablo Argüeso
{"title":"高尔基体α1,2-甘露糖苷酶 I 在上皮细胞迁移过程中诱导 CD147 的聚集和分区。","authors":"Miguel Gonzalez-Andrades, Supriya S Jalimarada, Maria Rodriguez-Benavente, Marissa N Feeley, Ashley M Woodward, Dina B AbuSamra, Pablo Argüeso","doi":"10.1080/19336918.2020.1764170","DOIUrl":null,"url":null,"abstract":"<p><p>CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"14 1","pages":"96-105"},"PeriodicalIF":3.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Golgi α1,2-mannosidase I induces clustering and compartmentalization of CD147 during epithelial cell migration.\",\"authors\":\"Miguel Gonzalez-Andrades, Supriya S Jalimarada, Maria Rodriguez-Benavente, Marissa N Feeley, Ashley M Woodward, Dina B AbuSamra, Pablo Argüeso\",\"doi\":\"10.1080/19336918.2020.1764170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.</p>\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"14 1\",\"pages\":\"96-105\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2020.1764170\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2020.1764170","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Golgi α1,2-mannosidase I induces clustering and compartmentalization of CD147 during epithelial cell migration.
CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.