Cell最新文献

筛选
英文 中文
RNA G-quadruplexes form scaffolds that promote neuropathological α-synuclein aggregation RNA G-四重链形成支架,促进神经病理α-突触核蛋白聚集
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-18 DOI: 10.1016/j.cell.2024.09.037
Kazuya Matsuo, Sefan Asamitsu, Kohei Maeda, Hiroyoshi Suzuki, Kosuke Kawakubo, Ginji Komiya, Kenta Kudo, Yusuke Sakai, Karin Hori, Susumu Ikenoshita, Shingo Usuki, Shiori Funahashi, Hideki Oizumi, Atsushi Takeda, Yasushi Kawata, Tomohiro Mizobata, Norifumi Shioda, Yasushi Yabuki
{"title":"RNA G-quadruplexes form scaffolds that promote neuropathological α-synuclein aggregation","authors":"Kazuya Matsuo, Sefan Asamitsu, Kohei Maeda, Hiroyoshi Suzuki, Kosuke Kawakubo, Ginji Komiya, Kenta Kudo, Yusuke Sakai, Karin Hori, Susumu Ikenoshita, Shingo Usuki, Shiori Funahashi, Hideki Oizumi, Atsushi Takeda, Yasushi Kawata, Tomohiro Mizobata, Norifumi Shioda, Yasushi Yabuki","doi":"10.1016/j.cell.2024.09.037","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.037","url":null,"abstract":"Synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, are triggered by α-synuclein aggregation, triggering progressive neurodegeneration. However, the intracellular α-synuclein aggregation mechanism remains unclear. Herein, we demonstrate that RNA G-quadruplex assembly forms scaffolds for α-synuclein aggregation, contributing to neurodegeneration. Purified α-synuclein binds RNA G-quadruplexes directly through the N terminus. RNA G-quadruplexes undergo Ca<sup>2+</sup>-induced phase separation and assembly, accelerating α-synuclein sol-gel phase transition. In α-synuclein preformed fibril-treated neurons, RNA G-quadruplex assembly comprising synaptic mRNAs co-aggregates with α-synuclein upon excess cytoplasmic Ca<sup>2+</sup> influx, eliciting synaptic dysfunction. Forced RNA G-quadruplex assembly using an optogenetic approach evokes α-synuclein aggregation, causing neuronal dysfunction and neurodegeneration. The administration of 5-aminolevulinic acid, a protoporphyrin IX prodrug, prevents RNA G-quadruplex phase separation, thereby attenuating α-synuclein aggregation, neurodegeneration, and progressive motor deficits in α-synuclein preformed fibril-injected synucleinopathic mice. Therefore, Ca<sup>2+</sup> influx-induced RNA G-quadruplex assembly accelerates α-synuclein phase transition and aggregation, potentially contributing to synucleinopathies.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"64 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-induced targeting enables proteomics on endogenous condensates 光诱导靶向技术实现了对内源性凝聚物的蛋白质组学研究
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-18 DOI: 10.1016/j.cell.2024.09.040
Choongman Lee, Andrea Quintana, Ida Suppanz, Alejandro Gomez-Auli, Gerhard Mittler, Ibrahim I. Cissé
{"title":"Light-induced targeting enables proteomics on endogenous condensates","authors":"Choongman Lee, Andrea Quintana, Ida Suppanz, Alejandro Gomez-Auli, Gerhard Mittler, Ibrahim I. Cissé","doi":"10.1016/j.cell.2024.09.040","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.040","url":null,"abstract":"Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"102 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From periphery to center stage: 50 years of advancements in innate immunity 从外围到中心舞台:先天性免疫 50 年的发展历程
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-18 DOI: 10.1016/j.cell.2024.10.013
Susan Carpenter, Luke A.J. O’Neill
{"title":"From periphery to center stage: 50 years of advancements in innate immunity","authors":"Susan Carpenter, Luke A.J. O’Neill","doi":"10.1016/j.cell.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.cell.2024.10.013","url":null,"abstract":"(Cell <em>187</em>, 2030–2051; April 25, 2024)","PeriodicalId":9656,"journal":{"name":"Cell","volume":"12 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes PLD3 和 PLD4 合成 S,S-BMP,这是一种能在溶酶体中实现脂质降解的关键磷脂
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.09.036
Shubham Singh, Ulrich E. Dransfeld, Yohannes A. Ambaw, Joshua Lopez-Scarim, Robert V. Farese, Tobias C. Walther
{"title":"PLD3 and PLD4 synthesize S,S-BMP, a key phospholipid enabling lipid degradation in lysosomes","authors":"Shubham Singh, Ulrich E. Dransfeld, Yohannes A. Ambaw, Joshua Lopez-Scarim, Robert V. Farese, Tobias C. Walther","doi":"10.1016/j.cell.2024.09.036","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.036","url":null,"abstract":"Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the <em>S</em> (rather than the <em>R</em>) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial <em>S</em>,<em>S-</em>stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal <em>S</em>,<em>S-</em>BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction <em>in vitro</em>. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer’s disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal <em>S</em>,<em>S-</em>BMP, a crucial lipid for maintaining brain health.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"124 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the brain: From neural representations to mechanistic models 解码大脑:从神经表征到机理模型
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.08.051
Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F. Chang, Andreas S. Tolias, Alexander Mathis
{"title":"Decoding the brain: From neural representations to mechanistic models","authors":"Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F. Chang, Andreas S. Tolias, Alexander Mathis","doi":"10.1016/j.cell.2024.08.051","DOIUrl":"https://doi.org/10.1016/j.cell.2024.08.051","url":null,"abstract":"A central principle in neuroscience is that neurons within the brain act in concert to produce perception, cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different functions to varying extents, and their function relies on distributed circuits to continuously encode relevant environmental and body-state features, enabling other areas to decode (interpret) these representations for computing meaningful decisions and executing precise movements. Thus, the distributed brain can be thought of as a series of computations that act to encode and decode information. In this perspective, we detail important concepts of neural encoding and decoding and highlight the mathematical tools used to measure them, including deep learning methods. We provide case studies where decoding concepts enable foundational and translational science in motor, visual, and language processing.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"14 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the neural basis of natural intelligence 了解自然智能的神经基础
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.07.049
Angelo Forli, Michael M. Yartsev
{"title":"Understanding the neural basis of natural intelligence","authors":"Angelo Forli, Michael M. Yartsev","doi":"10.1016/j.cell.2024.07.049","DOIUrl":"https://doi.org/10.1016/j.cell.2024.07.049","url":null,"abstract":"Understanding the neural basis of natural intelligence necessitates a paradigm shift: from strict reductionism toward embracing complexity and diversity. New tools and theories enable us to tackle this challenge, providing unprecedented access to neural dynamics and behavior across time, contexts, and species. Principles for intelligent behavior and learning in the natural world are now, more than ever, within reach.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"11 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A line attractor encoding a persistent internal state requires neuropeptide signaling. 编码持久内部状态的线吸引子需要神经肽信号。
IF 45.5 1区 生物学
Cell Pub Date : 2024-10-17 Epub Date: 2024-08-26 DOI: 10.1016/j.cell.2024.08.015
George Mountoufaris, Aditya Nair, Bin Yang, Dong-Wook Kim, Amit Vinograd, Samuel Kim, Scott W Linderman, David J Anderson
{"title":"A line attractor encoding a persistent internal state requires neuropeptide signaling.","authors":"George Mountoufaris, Aditya Nair, Bin Yang, Dong-Wook Kim, Amit Vinograd, Samuel Kim, Scott W Linderman, David J Anderson","doi":"10.1016/j.cell.2024.08.015","DOIUrl":"10.1016/j.cell.2024.08.015","url":null,"abstract":"<p><p>Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1<sup>+</sup> neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":"5998-6015.e18"},"PeriodicalIF":45.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conserved fertilization complex bridges sperm and egg in vertebrates 脊椎动物中连接精子和卵子的保守受精复合体
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.09.035
Victoria E. Deneke, Andreas Blaha, Yonggang Lu, Johannes P. Suwita, Jonne M. Draper, Clara S. Phan, Karin Panser, Alexander Schleiffer, Laurine Jacob, Theresa Humer, Karel Stejskal, Gabriela Krssakova, Elisabeth Roitinger, Dominik Handler, Maki Kamoshita, Tyler D.R. Vance, Xinyin Wang, Joachim M. Surm, Yehu Moran, Jeffrey E. Lee, Andrea Pauli
{"title":"A conserved fertilization complex bridges sperm and egg in vertebrates","authors":"Victoria E. Deneke, Andreas Blaha, Yonggang Lu, Johannes P. Suwita, Jonne M. Draper, Clara S. Phan, Karin Panser, Alexander Schleiffer, Laurine Jacob, Theresa Humer, Karel Stejskal, Gabriela Krssakova, Elisabeth Roitinger, Dominik Handler, Maki Kamoshita, Tyler D.R. Vance, Xinyin Wang, Joachim M. Surm, Yehu Moran, Jeffrey E. Lee, Andrea Pauli","doi":"10.1016/j.cell.2024.09.035","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.035","url":null,"abstract":"Fertilization, the basis for sexual reproduction, culminates in the binding and fusion of sperm and egg. Although several proteins are known to be crucial for this process in vertebrates, the molecular mechanisms remain poorly understood. Using an AlphaFold-Multimer screen, we identified the protein Tmem81 as part of a conserved trimeric sperm complex with the essential fertilization factors Izumo1 and Spaca6. We demonstrate that Tmem81 is essential for male fertility in zebrafish and mice. In line with trimer formation, we show that Izumo1, Spaca6, and Tmem81 interact in zebrafish sperm and that the human orthologs interact <em>in vitro</em>. Notably, complex formation creates the binding site for the egg fertilization factor Bouncer in zebrafish. Together, our work presents a comprehensive model for fertilization across vertebrates, where a conserved sperm complex binds to divergent egg proteins—Bouncer in fish and JUNO in mammals—to mediate sperm-egg interaction.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"16 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In search of problems 寻找问题
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.09.017
Mu-ming Poo
{"title":"In search of problems","authors":"Mu-ming Poo","doi":"10.1016/j.cell.2024.09.017","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.017","url":null,"abstract":"With early training in physics, my career was marked by continuous learning and searching for interesting problems in biology. Here, I recount some key events that influenced my choices of research topics. The diversity of topics could be attributed to my own lack of a particular focus and the interests of students and postdocs who happened to join my laboratory. My scientific and educational ventures led to my extensive involvement in Chinese neuroscience and various studies in non-human primates.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"28 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The expanding world of neuroscience 不断扩大的神经科学世界
IF 64.5 1区 生物学
Cell Pub Date : 2024-10-17 DOI: 10.1016/j.cell.2024.09.015
{"title":"The expanding world of neuroscience","authors":"","doi":"10.1016/j.cell.2024.09.015","DOIUrl":"https://doi.org/10.1016/j.cell.2024.09.015","url":null,"abstract":"Understanding the brain fascinates and intrigues many across the world. In this 50th Anniversary “Focus on Neuroscience” issue, we present Leading Edge content reflecting on the progress of the field, highlighting emerging topics, and paving the way toward many more years of exciting neuroscience research.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"2 1","pages":""},"PeriodicalIF":64.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信