Kevin C. Allan, Jesse J. Zhan, Andrew R. Morton, Erin F. Cohn, Marissa A. Scavuzzo, Anushka Nikhil, Matthew S. Elitt, Benjamin L.L. Clayton, Lucille R. Hu, H. Elizabeth Shick, Jost K. Vrabic, Hannah E. Olsen, Daniel C. Factor, Jonathan E. Henninger, Gemma Bachmann, Berit E. Powers, Richard A. Young, Charles Y. Lin, Peter C. Scacheri, Tyler E. Miller, Paul J. Tesar
{"title":"Transient gene melting governs the timing of oligodendrocyte maturation","authors":"Kevin C. Allan, Jesse J. Zhan, Andrew R. Morton, Erin F. Cohn, Marissa A. Scavuzzo, Anushka Nikhil, Matthew S. Elitt, Benjamin L.L. Clayton, Lucille R. Hu, H. Elizabeth Shick, Jost K. Vrabic, Hannah E. Olsen, Daniel C. Factor, Jonathan E. Henninger, Gemma Bachmann, Berit E. Powers, Richard A. Young, Charles Y. Lin, Peter C. Scacheri, Tyler E. Miller, Paul J. Tesar","doi":"10.1016/j.cell.2025.07.039","DOIUrl":null,"url":null,"abstract":"Cellular maturation is a crucial step for tissue formation and function, distinct from the initial steps of differentiation and cell fate specification. In the central nervous system, failure of oligodendrocyte maturation is linked to diseases such as multiple sclerosis. Here, we report a transcriptional mechanism that governs the timing of oligodendrocyte maturation. After progenitor cells differentiate into immature oligodendrocytes, the transcription factor SOX6 redistributes from super-enhancers to cluster across specific gene bodies. These sites exhibit extensive chromatin decondensation and transcription, which abruptly turn off upon maturation. Suppression of SOX6 deactivates these immaturity loci, accelerating the transition to mature, myelinating oligodendrocytes. Notably, cells harboring this immature SOX6 gene signature are enriched in multiple sclerosis patient brains and antisense oligonucleotide-mediated <em>Sox6</em> knockdown drives oligodendrocyte maturation in mice. Our findings establish SOX6 as a key regulator of oligodendrocyte maturation and highlight its potential as a therapeutic target to promote myelination in disease.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"53 1","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular maturation is a crucial step for tissue formation and function, distinct from the initial steps of differentiation and cell fate specification. In the central nervous system, failure of oligodendrocyte maturation is linked to diseases such as multiple sclerosis. Here, we report a transcriptional mechanism that governs the timing of oligodendrocyte maturation. After progenitor cells differentiate into immature oligodendrocytes, the transcription factor SOX6 redistributes from super-enhancers to cluster across specific gene bodies. These sites exhibit extensive chromatin decondensation and transcription, which abruptly turn off upon maturation. Suppression of SOX6 deactivates these immaturity loci, accelerating the transition to mature, myelinating oligodendrocytes. Notably, cells harboring this immature SOX6 gene signature are enriched in multiple sclerosis patient brains and antisense oligonucleotide-mediated Sox6 knockdown drives oligodendrocyte maturation in mice. Our findings establish SOX6 as a key regulator of oligodendrocyte maturation and highlight its potential as a therapeutic target to promote myelination in disease.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.