{"title":"Chick chorioallantoic membrane: a valuable 3D <i>in vivo</i> model for screening nanoformulations for tumor antiangiogenic therapeutics.","authors":"Anna Senrung, Tanya Tripathi, Divya Janjua, Sunita Kumari Yadav, Arun Chhokar, Nikita Aggarwal, Joni Yadav, Apoorva Chaudhary, Udit Joshi, Pallavi Sethi, Alok Chandra Bharti","doi":"10.1387/ijdb.230198pb","DOIUrl":"10.1387/ijdb.230198pb","url":null,"abstract":"<p><p>Drug discovery is an extensive process. From identifying lead compounds to approval for clinical application, it goes through a sequence of labor-intensive <i>in vitro</i>, <i>in vivo</i> preclinical screening and clinical trials. Among thousands of drugs screened only a few get approval for clinical trials. Furthermore, these approved drugs are often discontinued due to systemic toxicity and comorbidity at clinically administered dosages. To overcome these limitations, nanoformulations have emerged as the most sought-after strategy to safely and effectively deliver drugs within tumors at therapeutic concentrations. Most importantly, the employment of suitably variable preclinical models is considered highly critical for the therapeutic evaluation of candidate drugs or their formulations. A review of literature from the past 10 years on antiangiogenic nanoformulations shows the employment of limited types of preclinical models mainly the 2-dimensional (2D) monolayer cell culture and murine models as the mainstay for drug uptake, toxicity and efficiency studies. To top it all, murine models are highly expensive, time-consuming and require expertise in handling them. The current review highlights the utilization of the age-old chicken chorioallantoic membrane (CAM), a well-defined angiogenic model in the investigation of antiangiogenic compounds and nanoformulations in an economic framework. For practical applicability, we have evaluated the CAM model to demonstrate the screening of antiangiogenic compounds and that tumor cells can be implanted onto developing CAM for growing xenografts by recruiting host endothelial and other cellular components. In addition, the exploitation of CAM tumor xenograft models for the evaluation of nanoparticle distribution has also been reinforced by demonstrating that intravenously administered iron oxide nanoparticles (IONPs) passively accumulate and exhibit intracellular as well as extracellular compartment accumulation in highly vascular xenografts. Finally, the ethical considerations, benefits, and drawbacks, of using CAM as an experimental model for testing potential therapeutics are also highlighted.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 4","pages":"115-135"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sahar Ghosouri, Mohammad Bakhtiari, Soleimani Mitra, Nazem Ghasemi
{"title":"Valproic acid effects on human adipose-derived stem cell differentiation into oligodendrocytes and improved remyelination in a mouse model of Multiple Sclerosis.","authors":"Sahar Ghosouri, Mohammad Bakhtiari, Soleimani Mitra, Nazem Ghasemi","doi":"10.1387/ijdb.230154ng","DOIUrl":"10.1387/ijdb.230154ng","url":null,"abstract":"<p><p>Valproic acid (VPA), a neuroprotective agent and inhibitor of GSK3-β, along with human Adipose-Derived Stem Cells (hADSCs) have been proposed to be potential therapeutic agents for neurodegenerative disorders. In the present study, we have assessed the effects of VPA alone or in combination with hADSCs on oligodendrocyte differentiation, remyelination, and functional recovery in a mouse model of Multiple Sclerosis (MS). These MS-model mice were randomly divided into cuprizone, sham, VPA, hADSC, and VPA/hADSC groups, with 10 mice considered a control group (healthy mice). The hanging wire test was used to measure motor behavior. To estimate the level of myelination, we performed toluidine blue staining and immunofluorescent staining for OLIG2 and MOG-positive cells. Real-time PCR was used to evaluate the expression of β-catenin, human and mouse Mbp, Mog, and Olig2 genes. Remyelination and motor function improved in mice receiving VPA, hADSCs, and especially VPA/hADSCs compared to the Cup and Sham groups (<i>P < 0.01</i>). Additionally, the number of MOG and OLIG2 positive cells significantly increased in the VPA/hADSCs group compared to the Cup and Sham groups (<i>P < 0.01</i>). The expression of β-catenin, myelin and the other oligodendrocyte-specific genes was significantly higher in the VPA recipient groups. Valproic acid can enhance the differentiation of stem cells into oligodendrocytes, making it a potential candidate for MS treatment.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 3","pages":"101-108"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The stem cell transcription factor ZFP296 transforms NIH3T3 cells and promotes anchorage-independent growth of cancer cells.","authors":"Yumi Mizoue, Tomomi Ikeda, Takako Ikegami, Oleksandra Riabets, Yoshie Oishi, Morikuni Tobita, Hidenori Akutsu, Koichi Hattori, Beate Heissig, Hiroshi Koide","doi":"10.1387/ijdb.230143hk","DOIUrl":"10.1387/ijdb.230143hk","url":null,"abstract":"<p><p>Cancer cells and embryonic stem (ES) cells share several biological properties, suggesting that some genes expressed in ES cells may play an important role in cancer cell growth. In this study, we investigated the possible role of zinc finger protein 296 (ZFP296), a transcription factor expressed in ES cells, in cancer development. First, we found that overexpression of <i>Zfp296</i> in NIH3T3 mouse fibroblasts induced two phenomena indicative of cell transformation: enhanced proliferation under low-serum conditions and anchorage-independent growth. We also found that <i>Zfp296</i> expression was upregulated in the tumor area of a mouse model of colon carcinogenesis. In addition, the expression levels of <i>ZFP296</i> in various human cell lines were generally low in normal cells and relatively high in cancer cells. Finally, using a soft agar assay, we found that overexpression of <i>ZFP296</i> promoted the anchorage-independent growth of cancer cells, while its knockdown had the opposite effect. Overall, these results suggest a possible role of the ES-specific transcription factor ZFP296 in cancer.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 4","pages":"147-153"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polarized contact behavior in directionally migrating <i>Xenopus</i> gastrula mesendoderm.","authors":"Martina Nagel, Rudolf Winklbauer","doi":"10.1387/ijdb.230123rw","DOIUrl":"10.1387/ijdb.230123rw","url":null,"abstract":"<p><p>The control of cell-cell adhesion and detachment is essential for collective migration and cell rearrangement. Here, we have used the contact behavior of <i>Xenopus</i> gastrula mesoderm explants migrating directionally on ectoderm conditioned substratum to study the regulation of active cell-cell detachment. When colliding laterally, explants repelled each other, whereas they fused front-to-back when aligned in the direction of migration. For this mesoderm polarization by the substratum, we identified three control modules. First, PDGF-A signaling normally suppresses contact-induced collapse of lamellipodia in a polarized manner. Disruption of PDGF-A function, or of Xwnt6, decreased the polarization of explant contact behavior. Second, the Wnt receptor Xfz7 acted upstream of the kinase Pak1 to control explant fusion independently of PDGF-A-promoted lamellipodia stability. Third, ephrinB1 acted with Dishevelled (Dvl) in front-to-back explant fusion. The second and third modules have been identified previously as regulators of tissue separation at the ectoderm-mesoderm boundary. On non-polarizing, fibronectin-coated substratum, they controlled repulsion between explants in the same way as between tissues during boundary formation. However, explant repulsion/fusion responses were reversed on conditioned substratum by the endogenous guidance cues that also control oriented contact inhibition of lamellipodia. Together, control modules and substratum-bound guidance cues combine preferential front-back adhesion and diminished lateral adhesion of cells to promote collective directional mesoderm migration.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"79-90"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the role of the Wnt signaling pathway in the regeneration of animal model systems.","authors":"Katarzyna S Walczyńska, Ling Zhu, Yujun Liang","doi":"10.1387/ijdb.220144yl","DOIUrl":"10.1387/ijdb.220144yl","url":null,"abstract":"<p><p>Regeneration enables the regrowth and restoration of missing body parts. It is a common phenomenon among animals. However, only some species exhibit remarkable regeneration capabilities and can regenerate organs such as limbs, lenses or hearts. Regeneration has been widely studied, thereby giving rise to new fields, such as regenerative medicine. Furthermore, regeneration has the potential to be applied to the human body. However, the molecular mechanisms governing this process should be elucidated first. Recent advancements in research methods have led to the identification of numerous signaling pathways involved in regeneration. One of them, the Wnt transduction pathway, is an ancient and evolutionarily conserved pathway that plays an important role in both embryonic development and regeneration. The Wnt pathway plays an important role during the regeneration process, as it is implicated in cell fate determination, cell migration, cell polarity and adult cell homeostasis. To date, two major Wnt pathways have been identified: the canonical (β-catenin dependent) pathway and the non-canonical pathway. The latter pathway can be further divided into planar cell polarity, the Wnt/Ca2+ pathway and the JNK pathway. In this review, we summarize the current state of knowledge regarding the Wnt signaling pathway and its role in regeneration, with a particular emphasis on key model species.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 3","pages":"65-78"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental Biology: from genes to functional organism - news from the 3<sup>rd</sup> Meeting of the Visegrád Group Society for Developmental Biology.","authors":"Ewelina Trela, Agnieszka Walewska","doi":"10.1387/ijdb.230228et","DOIUrl":"10.1387/ijdb.230228et","url":null,"abstract":"<p><p>The third meeting of the Visegrád Group Society for Developmental Biology (V4SDB) was held on September 8<sup>th</sup>-10<sup>th</sup>, 2023 in Warsaw, Poland. It was a continuation of previous meetings, the first organized in the Czech Republic in 2018 and the second in Hungary in 2021. Similarly to the previous meetings, the organizers created a friendly platform for networking and science sharing. The conference gathered an excellent group of 160 researchers working on various animal models, who during lecture and poster sessions discussed a broad range of subjects, including early embryonic development, organogenesis, genetic and epigenetic control of developmental processes, stem cells and regeneration, cellular dynamics and migration in developmental biology, and <i>in vitro</i> models in development and disease. Additionally, two satellite events were organized: the Young Developmental Biologists' Forum, which gave young researchers an opportunity to share and promote their work and to participate in hands-on courses, and an outreach initiative \"Developmental Biology for Everyone\", which presented different aspects of developmental biology to a broad audience.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"109-114"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Ran, Lishuang Liu, Jingjing Gao, Yang Pan, Murugan Ramalingam, Xiaoyu Du, Ying Liu, Lijia Cheng, Zheng Shi
{"title":"Strontium-doped hydroxyapatite and its role in osteogenesis and angiogenesis","authors":"Ling Ran, Lishuang Liu, Jingjing Gao, Yang Pan, Murugan Ramalingam, Xiaoyu Du, Ying Liu, Lijia Cheng, Zheng Shi","doi":"10.1387/ijdb.230091lc","DOIUrl":"https://doi.org/10.1387/ijdb.230091lc","url":null,"abstract":"For the past 50 years, hydroxyapatite (HA) has been widely used in bone defect repair because it is the main inorganic component of the mineral phase of a human bone. Extensive preclinical and clinical studies have shown that strontium (Sr) can safely and effectively help prevent and treat bone diseases, including osteoporosis. These findings have resulted in the concept of integrating Sr and HA for bone disease management. The doped Sr can improve the physicochemical properties of HA and enhance its angiogenic and bone regeneration ability. Nevertheless, no study has reviewed the design strategy of Sr-doped HA (Sr-HA) to understand its biological roles. Therefore, in this article, we review recent developments in Sr-HA preparation and its effect on osteogenesis and angiogenesis in vitro and in vivo along with key suggestions for future research and development.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dimitrios Dimitrakopoulos, D. Kakogiannis, I. Kazanis
{"title":"Heterogeneity of quiescent and active neural stem cells in the postnatal brain.","authors":"Dimitrios Dimitrakopoulos, D. Kakogiannis, I. Kazanis","doi":"10.1387/ijdb.220010ik","DOIUrl":"https://doi.org/10.1387/ijdb.220010ik","url":null,"abstract":"In the postnatal mammalian brain, neurogenic activity is retained in anatomically restricted areas, driven by pools of Neural Stem Cells (NSCs). These cells and their progeny have been studied intensively as potential targets for regenerative treatments, aiming either to their in situmanipulation, or to their use as sources of cells for transplantation-based strategies. Although their full identity, heterogeneity and differentiation potential remain elusive, due to the absence of specific cell-type markers, our knowledge on their properties is constantly expanding. Here, we focus on the NSC niche that is located at the Subependymal Zone (SEZ/ also known as Subventricular Zone) of the lateral ventricles of the brain. We review, summarize and explain the different faces of the NSC, as they have been described using a wide range of experimental approaches in a time-frame of three decades: the primitive, definitive, quiescent or activated NSC. We also review the accumulating evidence on the existence of latent NSCs outside of niches, in the brain parenchyma, that constitute new promising therapeutic targets, complemented by the novel technologies of in vivocell reprogramming.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88124798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epithelial endothelial transition and endothelial mesenchymal transition.","authors":"D. Ribatti","doi":"10.1387/ijdb.210234dr","DOIUrl":"https://doi.org/10.1387/ijdb.210234dr","url":null,"abstract":"The movement of continuous sheets of epithelial cells occurs during embryonic development, tissue repair, and cancer. Common to cellular and molecular principles of collective cell migration, invading cancers seem to reactivate embryonic pathways and patterns of cell movement. Epithelial cells possess the capability to become mesenchymal cells in a process called epithelial mesenchymal transition (EMT), which has been extensively studied and described. The aim of this article is to summarizes the most recent literature data concerning less known epithelial-endothelial transition and endothelial-mesenchymal transition.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76497210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Konstantopoulos, Alexandros Dimiropoulos, N. Zagris
{"title":"Hyaluronan receptor CD44: developmentally regulated expression and role in the early chick embryo.","authors":"K. Konstantopoulos, Alexandros Dimiropoulos, N. Zagris","doi":"10.1387/ijdb.220008nz","DOIUrl":"https://doi.org/10.1387/ijdb.220008nz","url":null,"abstract":"CD44 is a membrane glycoprotein and is the main receptor for hyaluronan. We studied the CD44 expression and spatio-temporal distribution by RT-PCR and immunofluorescence, and used an anti-CD44 blocking antibody to perturb CD44-depended signalling programs in the early chick embryo. The intense CD44 levels we detected in the morula embryo (XI) were of novel interest suggestive of a maternally stored transcript. Intriguingly, the CD44 early presence seemed to be essential for the rapid synthesis of hyaluronan. At stage XIII (blastula), CD44 expression was intense in the epiblast and hypoblast. During gastrulation (HH3-4), the cells ingressing into the primitive groove and migrating and the blood islands expressed CD44 intensely. At HH8, the folding neural plate showed polarity regulation of CD44 expression, and expression was also intense in neural crest, notochord, and blood islands. During early organogenesis, CD44 was expressed intensely in the developing cranial and caudal neural tube which showed polarity regulation, in optic stalks, otic vesicles, pre-and migratory neural crest cells, ganglia, notochord, pharynx, gut, liver, aortae, heart, somites, vascular area, amnion, chorion and was distinct in extracellular matrix of cranial neural tube and otic vesicle lumens. Antibody-mediated perturbation of CD44 function resulted in unorganized extracellular matrix, loss of tissue spaces, grossly abnormal notochord, intermingling of clumped neuroectoderm and mesenchyme, absence of somites and blood vessels, inhibition of neural crest cell emigration. CD44 has various pivotal roles in matrix integrity and tissue patterning consistent with its known biochemical features and interactions with hyaluronan, growth factors, receptors and other signaling molecules.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78362851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}