{"title":"Expressional characterization of mRNA (guanine-7) methyltransferase (rnmt) during early development of Xenopus laevis.","authors":"Ashwin Lokapally, Sanjeeva Metikala, T. Hollemann","doi":"10.1387/ijdb.150409th","DOIUrl":"https://doi.org/10.1387/ijdb.150409th","url":null,"abstract":"Methylation of the guanosine cap structure at the 5' end of mRNA is essential for efficient translation of all eukaryotic cellular mRNAs, gene expression and cell viability and promotes transcription, splicing, polyadenylation and nuclear export of mRNA. In the current study, we present the spatial expression pattern of the Xenopus laevis rnmt homologue. A high percentage of protein sequence similarity, especially within the methyltransferase domain, as well as an increased expression in the cells of the transcriptionally active stages, suggests a conserved RNA cap methylation function. Spatial expression analysis identified expression domains in the brain, the retina, the lens, the otic vesicles and the branchial arches.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"21 1","pages":"65-9"},"PeriodicalIF":0.0,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79259730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Memoriam - Prof. G. Barry Pierce (1925-2015).","authors":"I. Damjanov","doi":"10.1387/ijdb.160014id","DOIUrl":"https://doi.org/10.1387/ijdb.160014id","url":null,"abstract":"Gordon Barry Pierce, my great mentor and long-time friend died in November 2015 at the age of 90 years. We will all miss him. What we are left with, however, are reminiscences of moments we spent with him, his jokes and stories to be retold and passed along, titbits of advice, and pearls of his common-sense Canadian wisdom. A vision of a better world to which he contributed so much. Scientific contributions too numerous to list, many of which had major impact on us who were interested in the same problems as he was. Seminal discoveries that impacted the progress in several fields of scientific endeavor. Major new concepts of oncology and developmental biology that opened new vistas and revolutionized our thinking about the crucial problems of biology and medicine. Unforgettable seminars and lectures. Unquenchable love for science. And much more that, nevertheless, can be summarized in two wondrous exclamations: What a man! What a life!","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73131362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Mukendi, N. Dean, Rushil Lala, J. Smith, M. Bronner, N. Nikitina
{"title":"Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.","authors":"Christian Mukendi, N. Dean, Rushil Lala, J. Smith, M. Bronner, N. Nikitina","doi":"10.1387/ijdb.150364nn","DOIUrl":"https://doi.org/10.1387/ijdb.150364nn","url":null,"abstract":"Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"5 2 1","pages":"39-51"},"PeriodicalIF":0.0,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91230612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumiyo Mimura, M. Suga, K. Okada, Masaki Kinehara, H. Nikawa, M. Furue
{"title":"Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells.","authors":"Sumiyo Mimura, M. Suga, K. Okada, Masaki Kinehara, H. Nikawa, M. Furue","doi":"10.1387/ijdb.160040mk","DOIUrl":"https://doi.org/10.1387/ijdb.160040mk","url":null,"abstract":"Neural crest (NC) cells are a group of cells located in the neural folds at the boundary between the neural and epidermal ectoderm. Cranial NC cells migrate to the branchial arches and give rise to the majority of the craniofacial region, whereas trunk and tail NC cells contribute to the heart, enteric ganglia of the gut, melanocytes, sympathetic ganglia, and adrenal chromaffin cells. Positional information is indispensable for the regulation of cranial or trunk and tail NC cells. However, the mechanisms underlying the regulation of positional information during human NC induction have yet to be fully elucidated. In the present study, supplementation of bone morphogenetic protein (BMP) 4 in defined serum-free culture conditions including fibroblast growth factor-2 and Wnt3a from day 8 after NC specification induced the expression of cranial NC markers, AP2alpha, MSX1, and DLX1, during NC cell differentiation from human pluripotent stem cells. On the other hand, the proportion of cells expressing p75(NTR) or HNK1 decreased compared with that of cells cultured without BMP4, whereas gene expression analysis demonstrated that the expression levels of cranial NC-associated genes increased in BMP4-treated NC cells. These BMP4-treated NC cells were capable of differentiation into osteocytes and chondrocytes. The results of the present study indicate that BMP4 regulates cranial positioning during NC development.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"22 1","pages":"21-8"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73522899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aisha Abduelmula, Ruijin Huang, Q. Pu, H. Tamamura, Gabriela Morosan-Puopolo, B. Brand-Saberi
{"title":"SDF-1 controls the muscle and blood vessel formation of the somite.","authors":"Aisha Abduelmula, Ruijin Huang, Q. Pu, H. Tamamura, Gabriela Morosan-Puopolo, B. Brand-Saberi","doi":"10.1387/ijdb.150132rh","DOIUrl":"https://doi.org/10.1387/ijdb.150132rh","url":null,"abstract":"Stromal-cell-derived factor-1 (SDF-1), the only ligand of the chemokine receptor CXCR4, is involved in skeletal muscle development. However, its role in the proliferation, differentiation and migration of somite cells is not well understood. Here, we investigated its function during somite development in chicken embryos by using gain-of-function and loss-of-function experiments. Overexpression of SDF-1 was performed by electroporating SDF-1 constructs into the ventrolateral part of the somite, or by injecting SDF-1-expressing cells into the somites of stages HH14-16 chicken embryos. We found that enhanced SDF-1 signaling induced cell proliferation in the somite. This resulted in an increase in number of both myotomal and endothelial cells. In contrast, inhibition of SDF-1/CXCR4 signaling led to a reduction of myotomal cells. Injection of SDF-1 producing cells into the somite induced ectopic localization of myotomal cells in the sclerotome. Although many SDF-1-expressing somite cells colonized the limb, only a few of them developed into muscle cells. This resulted in a reduction of the limb muscle mass. This means that most myogenic progenitors were stopped on their migration towards the limb due to the high concentration of the SDF-1 signal in the somite. Most of the SDF-1-expressing somite cells found in the limb were of endothelial cell fate and they contributed to the increase in limb blood vessels. These results reveal that SDF-1 promotes the proliferation of both myogenic and angiogenic progenitor cells of the somite and controls myotome formation. Furthermore, SDF-1 controls muscle and blood vessel formation in the limb in different ways.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"37 1","pages":"29-38"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87455486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Marracci, A. Vangelisti, V. Raffa, M. Andreazzoli, L. Dente
{"title":"pdzrn3 is required for pronephros morphogenesis in Xenopus laevis.","authors":"S. Marracci, A. Vangelisti, V. Raffa, M. Andreazzoli, L. Dente","doi":"10.1387/ijdb.150381ld","DOIUrl":"https://doi.org/10.1387/ijdb.150381ld","url":null,"abstract":"Pdzrn3, a multidomain protein with E3-ubiquitin ligase activity, has been reported to play a role in myoblast and osteoblast differentiation and, more recently, in neuronal and endothelial cell development. The expression of the pdzrn3 gene is developmentally regulated in various vertebrate tissues, including muscular, neural and vascular system. Little is known about its expression during kidney development, although genetic polymorphisms and alterations around the human pdzrn3 chromosomal region have been found to be associated with renal cell carcinomas and other kidney diseases. We investigated the pdzrn3 spatio-temporal expression pattern in Xenopus laevis embryos by in situ hybridization. We focused our study on the development of the pronephros, which is the embryonic amphibian kidney, functionally similar to the most primitive nephric structures of human kidney. To explore the role of pdzrn3 during renal morphogenesis, we performed loss-of-function experiments, through antisense morpholino injections and analysed the morphants using specific pronephric markers. Dynamic pdzrn3 expression was observed in embryonic tissues, such as somites, brain, eye, blood islands, heart, liver and pronephros. Loss of function experiments resulted in specific alterations of pronephros development. In particular, at early stages, pdzrn3 depletion was associated with a reduction of the pronephros anlagen and later, with perturbations of the tubulogenesis, including deformation of the proximal tubules. Rescue experiments, in which mRNA of the zebrafish pdzrn3 orthologue was injected together with the morpholino, allowed recovery of the kidney phenotypes. These results underline the importance of pdzrn3 expression for correct nephrogenesis.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"143 1","pages":"57-63"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80322190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincenzo Sannino, Arun M Kolinjivadi, Giorgio Baldi, Vincenzo Costanzo
{"title":"Studying essential DNA metabolism proteins in Xenopus egg extract.","authors":"Vincenzo Sannino, Arun M Kolinjivadi, Giorgio Baldi, Vincenzo Costanzo","doi":"10.1387/ijdb.160103vc","DOIUrl":"10.1387/ijdb.160103vc","url":null,"abstract":"<p><p>The correct duplication of genetic information is essential to maintain genome stability, which is lost in cancer cells. Replication fork integrity is ensured by a number of DNA metabolism proteins that assist replication of chromatin regions difficult to replicate due to their intrinsic DNA sequence composition, coordinate repair of DNA molecules resulting from aberrant replication events or protect replication forks in the presence of lesions impairing their progression. Some DNA metabolism genes involved in DNA repair are essential in higher eukaryotes even in unchallenged conditions, suggesting the existence of biological processes requiring these specialized functions in organisms with complex genomes. The impact on cell survival of null mutants of many DNA metabolism genes has precluded complete in depth analysis of their function. Cell free extracts represent a fundamental tool to overcome survival issues. The Xenopus laevis egg cell free extract is an ideal system to study replication-associated functions of essential genes. We are taking advantage of this system together with innovative imaging and proteomic based experimental approaches to characterize the molecular function of essential DNA metabolism proteins. Using this approach we have uncovered the role of some essential homologous recombination and fork protection proteins in chromosomal DNA replication and we have characterized some of the factors required for faithful replication of specific vertebrate genomic regions. This approach will be instrumental to study the molecular mechanisms underlying the function of a number of essential DNA metabolism proteins involved in the maintenance of genome stability in complex genomes.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"13 1","pages":"221-227"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82285023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Graham, D. Solter, J. Gearhart, J. Nadeau, B. Knowles
{"title":"Honoring the work and life of Leroy C. Stevens. A symposium as part of the International Stem Cell Initiative Workshop.","authors":"C. Graham, D. Solter, J. Gearhart, J. Nadeau, B. Knowles","doi":"10.1387/ijdb.160420bk","DOIUrl":"https://doi.org/10.1387/ijdb.160420bk","url":null,"abstract":"In 2016, a symposium was convened in Leroy C. Stevens' honor, in association with a meeting of the International Stem Cell Initiative (ISCI). ISCI, funded internationally, is composed of a group of ~100 scientists from many countries, under the leadership of Peter Andrews, who have worked together to characterize a significant number of human pluripotent stem cell lines, to monitor their genetic stability and their differentiation into mature cell types and tissues in vitro and in vivo. Those at the ISCI meeting puzzled through one of the thorniest problems in the therapeutic use of the differentiated derivatives of pluripotent stem cells for human therapy; namely, pluripotent stem cells can differentiate into any cell type in the adult organism, but they also have the capacity for unlimited self-renewal, hence if mutated they may have tumorigenic potential. The meeting considered how these cells might become genetically or epigenetically abnormal and how the safety of these cells for human therapeutic uses could be assessed and assured. The symposium was an opportunity to pay tribute to Leroy Stevens and to the basic science origins of this newest aspect of regenerative medicine. It was a time to reflect on the past and on how it can influence the future of our field.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"67 1","pages":"327-336"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76517765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Xue, Cencan Xing, Wenjuan Zhang, Can-bin Chen, Jingjin Xu, A. Meng, Yutian Pan
{"title":"Coordinate involvement of Nodal-dependent inhibition and Wnt-dependent activation in the maintenance of organizer-specific bmp2b in zebrafish.","authors":"Yu Xue, Cencan Xing, Wenjuan Zhang, Can-bin Chen, Jingjin Xu, A. Meng, Yutian Pan","doi":"10.1387/ijdb.150193yx","DOIUrl":"https://doi.org/10.1387/ijdb.150193yx","url":null,"abstract":"A vertebrate signaling center, known in zebrafish as the organizer, is essential for axis patterning and formation and is regulated by multiple cell signaling pathways, including Wnt, Nodal, and Bmp. Organizer-specific Bmp2b plays important roles in the maintenance of the Bmp activity gradient and dorsal-ventral patterning. However, it is unknown how transcription of bmp2b in the organizer is regulated. In this study, we generated a bmp2b transgenic line Tsg(-2.272bmp2b:gfp) that reproduced organizer-specific bmp2b expression. Dissection analysis revealed that a 0.273-kb minimal promoter was indispensable for bmp2b expression in the dorsal organizer. Reporter assays showed that organizer-specific bmp2b is negatively regulated by the Nodal signal and positively regulated by the Wnt signal in both embryos and cell lines. Promoter analysis and chromatin-immunoprecipitation (ChIP) indicated that one consensus Smad-binding element (SBE) (CAGAC) and one Lef/Tcf-binding element (LBE) (AGATAA) were present in the 0.273-kb promoter, and could be directly bound by Smad2 and β-catenin proteins. Together, these results suggest that maintenance of organizer-specific bmp2b expression involves opposite and concerted regulation by Nodal and Wnt signaling.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"5 1","pages":"13-9"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87657693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nucleolar protein 4-like has a complex expression pattern in zebrafish embryos.","authors":"S. Borah, Praveen Barrodia, R. Swain","doi":"10.1387/ijdb.150307rs","DOIUrl":"https://doi.org/10.1387/ijdb.150307rs","url":null,"abstract":"The nucleolar protein 4-like (NOL4L) gene is present on chromosome 20 (20q11.21) in humans. Parts of this gene have been shown to fuse with RUNX1 and PAX5 in acute myeloid leukemia and acute lymphoblastic leukemia, respectively. The normal function of NOL4L in humans and other organisms is not well understood. The expression patterns and functions of NOL4L homologs during vertebrate development have not been reported. We sought to address these questions by studying the expression pattern of zebrafish nol4l during embryogenesis. Our data show that Znol4l mRNA is expressed in multiple organs in zebrafish embryos. The sites of expression include parts of the brain, spinal cord, pronephros, hematopoietic cells and gut.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"45 1","pages":"53-6"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88622096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}