The International journal of developmental biology最新文献

筛选
英文 中文
Melastatin family Transient Receptor Potential channels support spermatogenesis in planarian flatworms. Melastatin家族瞬时受体电位通道支持涡虫精子发生。
The International journal of developmental biology Pub Date : 2025-01-01 DOI: 10.1387/ijdb.240180lr
Haley Nicole Curry, Roger Huynh, Labib Rouhana
{"title":"Melastatin family Transient Receptor Potential channels support spermatogenesis in planarian flatworms.","authors":"Haley Nicole Curry, Roger Huynh, Labib Rouhana","doi":"10.1387/ijdb.240180lr","DOIUrl":"https://doi.org/10.1387/ijdb.240180lr","url":null,"abstract":"<p><p>The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related family (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in the gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm <i>Schmidtea mediterranea</i> and analyzed their anatomical distribution of expression by whole-mount <i>in situ</i> hybridization. Enriched expression of two TRPMs (<i>Smed-TRPM-c</i> and <i>Smed-TRPM-l</i>) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of normal levels of <i>Smed-TRPM-c</i> expression impaired sperm development, indicating a role for this receptor in supporting spermatogenesis. <i>Smed-TRPM-l</i> RNAi alone did not result in a detectable phenotype, but it did increase sperm development deficiencies when combined with <i>Smed-TRPM-c</i> RNAi. Fluorescence <i>in situ</i> hybridization revealed expression of <i>Smed-TRPM-c</i> in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, <i>Smed-TRPM-c</i> RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that <i>Smed-TRPM-c</i> supports the establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of the few known examples for TRPM function in the direct regulation of sperm development.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"69 1","pages":"21-34"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144039564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three Decades of the Spanish Society for Developmental Biology (SEBD): Insights and Emerging Perspectives from the 18th Spanish Society for Developmental Biology Meeting (SEBD 2024). 三十年的西班牙社会发展生物学(SEBD):从第18届西班牙社会发展生物学会议(SEBD 2024)的见解和新兴观点。
The International journal of developmental biology Pub Date : 2025-01-01 DOI: 10.1387/ijdb.250034sa
Eloisa Herrera, Sandra Acosta, María Almuedo, Victor Borrell, Cristian Cañestro, Sergio Casas-Tintó, Luis M Escudero, Nicole Gorfinkiel, Esteban Hoijman, José Carlos Pastor-Pareja, Barbara Pernaute, Teresa Rayón, Murielle Saade, Jordi Solana, Vikas Trivedi, Elisa Martí, Cristina Pujades, Sofia J Araújo
{"title":"Three Decades of the Spanish Society for Developmental Biology (SEBD): Insights and Emerging Perspectives from the 18th Spanish Society for Developmental Biology Meeting (SEBD 2024).","authors":"Eloisa Herrera, Sandra Acosta, María Almuedo, Victor Borrell, Cristian Cañestro, Sergio Casas-Tintó, Luis M Escudero, Nicole Gorfinkiel, Esteban Hoijman, José Carlos Pastor-Pareja, Barbara Pernaute, Teresa Rayón, Murielle Saade, Jordi Solana, Vikas Trivedi, Elisa Martí, Cristina Pujades, Sofia J Araújo","doi":"10.1387/ijdb.250034sa","DOIUrl":"https://doi.org/10.1387/ijdb.250034sa","url":null,"abstract":"<p><p>The Spanish Society for Developmental Biology (SEBD) organized its 18<sup>th</sup> meeting in October 2024 (hereafter SEBD2024), coinciding with the society's 30<sup>th</sup> anniversary and serving as the stage for its celebrations. This article provides an overview of the event, including the speakers, scientific sessions and the different activities related to the anniversary.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"69 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144045566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of COX2 impairs angiogenesis and causes vascular defects in developing zebrafish embryos. 抑制COX2损害血管生成并导致发育中的斑马鱼胚胎血管缺陷。
The International journal of developmental biology Pub Date : 2025-01-01 DOI: 10.1387/ijdb.240222sb
Lakshmi Pillai, Vishakha Nesari, Dhanush Danes, Suresh Balakrishnan
{"title":"Inhibition of COX2 impairs angiogenesis and causes vascular defects in developing zebrafish embryos.","authors":"Lakshmi Pillai, Vishakha Nesari, Dhanush Danes, Suresh Balakrishnan","doi":"10.1387/ijdb.240222sb","DOIUrl":"10.1387/ijdb.240222sb","url":null,"abstract":"<p><p>This study investigated the role of cyclooxygenase-2 (COX2) in angiogenesis during zebrafish embryogenesis by inhibiting COX2 activity with etoricoxib. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis confirmed the successful penetration of etoricoxib into zebrafish embryos, leading to selective inhibition of COX2 without affecting COX1 activity. COX2 inhibition caused a significant reduction in prostaglandin E<sub>2</sub> levels throughout development. Phenotypically, treated embryos exhibited pericardial edema, bradycardia, and defective vascular development, including delays in intersegmental vessel (ISV) sprouting, incomplete dorsal longitudinal anastomotic vessel (DLAV) formation by 48 hpf, and impaired vascular networks by 72 hpf. Confocal imaging and AngioTool analysis revealed reduced vessel length, area and increased lacunarity. Molecular analysis showed significant downregulation of <i>vascular endothelial growth factor A (vegfa), kdr</i>, <i>pi3k</i> and <i>akt</i> transcripts, as well as reduced VEGFA, EP4 and Akt protein levels, disrupting VEGFA-PI3K-Akt signaling. Additionally, reduced expression of <i>ephrinb</i> and <i>prox1</i> affected arterial and venous identity formation. These results demonstrate that COX2 is essential for proper angiogenesis during zebrafish development, and its inhibition leads to significant vascular defects, underscoring COX2's crucial role in regulating VEGFA-mediated angiogenesis.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"11-20"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling hepatic consequences of intrauterine growth restriction and catch-up growth: insights from histological, biochemical and metabolomic analysis in rats. 揭示宫内生长限制和追赶生长对肝脏的影响:来自大鼠组织学、生化和代谢组学分析的见解。
The International journal of developmental biology Pub Date : 2025-01-01 DOI: 10.1387/ijdb.240147me
Mukaddes Esrefoğlu, Sahabettin Selek, Fatmanur Koktasoglu, Nihan Bayindir, Emine-Rumeysa Hekimoglu, Seda Kirmizikan, Fatma-Bedia Karakaya-Cimen, Halime Dulun-Agac, Mehtap Alim, Birsen Elibol, Ozge Pasin, Somer Bekiroglu
{"title":"Unraveling hepatic consequences of intrauterine growth restriction and catch-up growth: insights from histological, biochemical and metabolomic analysis in rats.","authors":"Mukaddes Esrefoğlu, Sahabettin Selek, Fatmanur Koktasoglu, Nihan Bayindir, Emine-Rumeysa Hekimoglu, Seda Kirmizikan, Fatma-Bedia Karakaya-Cimen, Halime Dulun-Agac, Mehtap Alim, Birsen Elibol, Ozge Pasin, Somer Bekiroglu","doi":"10.1387/ijdb.240147me","DOIUrl":"10.1387/ijdb.240147me","url":null,"abstract":"<p><p>Intrauterine growth restriction (IUGR) is increasingly recognized as a significant risk factor for metabolic disorders in adulthood. Employing a multi-faceted approach encompassing histopathological, immunohistochemical, biochemical, Western-blotting, and metabolomics analyses, this study aimed to elucidate potential metabolite markers of IUGR, and catch-up growth-related metabolic disturbances and the underlying metabolic pathways implicated in IUGR pathogenesis. This study cohort comprised 54 male siblings from 20 Sprague-Dawley female young rats. On the 19th day of gestation, half of the pregnant rats underwent bilateral uterine artery ligation, while the remaining half underwent a simulated surgical intervention involving solely peritoneal incisions. Blood and liver samples were collected from the pups after attaining catch-up growth at the postnatal weeks 2, 4, and 8. IUGR rats exhibited a spectrum of changes including histological abnormalities, altered apoptosis rates, oxidative stress markers, and mitochondrial energy metabolism. Metabolomic analysis revealed dysregulation in multiple metabolic pathways encompassing galactose, propanoate, glycerolipid, cysteine, methionine, and tyrosine metabolism, among others. Notably, disturbances were observed in butanoate, glutathione metabolism, valine, leucine, and isoleucine biosynthesis and degradation, citrate cycle, aminoacyl-tRNA biosynthesis, as well as glycolysis/gluconeogenesis. Our metabolomics analysis provides insights into the potential disease susceptibility of individuals born with IUGR, including obesity, diabetes, heart failure, cancer, mental retardation, kidney and liver diseases, and cataracts. These findings underscore the intricate interplay between intrauterine conditions and long-term metabolic health outcomes, highlighting the need for further investigation into preventive and therapeutic strategies aimed at mitigating the risk of metabolic diseases in individuals with a history of IUGR.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"35-50"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143766259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Placental transcriptome reveals the placental brain axis genes and pathways of gestational diabetes mellitus (GDM) affecting offspring neurodevelopment. 胎盘转录组揭示了妊娠糖尿病(GDM)影响子代神经发育的胎盘脑轴基因和途径。
The International journal of developmental biology Pub Date : 2025-01-01 DOI: 10.1387/ijdb.240170jl
Jianhua Li, Qian Liu, Xuhui Liu, Yunyun Wang, Yuxia Jin, Weikai Wang, Bin Yi, Yanxia Wang
{"title":"Placental transcriptome reveals the placental brain axis genes and pathways of gestational diabetes mellitus (GDM) affecting offspring neurodevelopment.","authors":"Jianhua Li, Qian Liu, Xuhui Liu, Yunyun Wang, Yuxia Jin, Weikai Wang, Bin Yi, Yanxia Wang","doi":"10.1387/ijdb.240170jl","DOIUrl":"https://doi.org/10.1387/ijdb.240170jl","url":null,"abstract":"<p><p>This study aims to analyze the pathways and the placental brain axis genes of gestational <i>diabetes mellitus</i> (GDM) affecting offspring neurodevelopment. Differentially expressed genes (DEGs) were identified through transcriptome sequencing of placental tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on DEGs. A protein-protein interaction (PPI) network was constructed and annotated using the STRING online software. The expression of neurodevelopment-related genes was analyzed by qPCR. Hubgenes were analyzed using Cytoscape 3.7.1 software. The correlation between Hubgenes and placental brain axis genes was analyzed through literatures alignment. The pathways of GDM affecting offspring neural development were predicted using the KEGG database. The placental transcriptome revealed that there were 404 DEGs between GDM and Normal groups. Among these DEGs, 125 were upregulated and 279 were downregulated. GO analysis indicated that DEGs were mainly involved in intracellular calcium activated chloride channel activity, anion channel activity, G protein-coupled peptide receptors, etc. Additionally, KEGG analysis revealed that DEGs were predominantly involved in neuroactive ligand receptor interaction pathways. STRING online software analysis revealed that the DLGAP1, NXNL2, SCG2, SLC18A2, LYNX1, GRM1, DLGAP1, BIRC7 genes were associated with neurodevelopment. PCR validation of these 8 genes was consistent with transcriptome results (<i>P</i><0.05). Literatures alignment showed that DLGAP1, GRM1 and SLC18A2 are placental brain axis genes that influence offspring neurodevelopment. The placental brain axis genes DLGAP1, GRM1, SLC18A2 have been found to influence GDM offspring neurodevelopment through the regulation of the Gq/PLC/PKC pathway.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"69 1","pages":"51-59"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144048930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Genetic Odyssey of Axolotl Regeneration: Insights and Innovations. Axolotl 再生的基因奥德赛:洞察与创新。
The International journal of developmental biology Pub Date : 2024-12-12 DOI: 10.1387/ijdb.240111yl
Muhammad Faisal, Afshan Mehreen, Deli Hays, Faiza Yaseen, Yujun Liang
{"title":"The Genetic Odyssey of Axolotl Regeneration: Insights and Innovations.","authors":"Muhammad Faisal, Afshan Mehreen, Deli Hays, Faiza Yaseen, Yujun Liang","doi":"10.1387/ijdb.240111yl","DOIUrl":"https://doi.org/10.1387/ijdb.240111yl","url":null,"abstract":"<p><p>The axolotl, a legendary creature with the potential to regenerate complex body parts, is positioned as a powerful model organism due to its extraordinary regenerative capabilities. Axolotl can undergo successful regeneration of multiple structures, providing us with the opportunity to understand the factors that exhibit altered activity between regenerative and non-regenerative animals. This comprehensive review will explore the mysteries of axolotl regeneration, from the initial cellular triggers to the intricate signaling cascades that guide this complex process. We will delve deeply into the multifaceted interplay of genes and factors, highlighting the key role of signaling pathways and the influence of epigenetic modifications (such as DNA methylation, histone modification, and miRNA regulation) during regeneration. Furthermore, we will discuss how axolotls defy the odds by showing remarkable resistance to cancer, offering insights into potential therapeutic strategies. However, that is not the end; we will also highlight how age might affect the regenerative power of this creature. We hope this review will help navigate the awe-inspiring realm of axolotl regeneration, advance our understanding of regenerative biology, and chart pathways for future investigations aimed at uncovering new therapeutic approaches.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"103-116"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibroblast Growth Factor 8 enhances the chondrogenesis of trunk neural crest cells: a possible gene regulatory network. 成纤维细胞生长因子8促进主干神经嵴细胞的软骨形成:一个可能的基因调控网络。
The International journal of developmental biology Pub Date : 2024-12-12 DOI: 10.1387/ijdb.240189gc
Raphaella Josino, Saloe Bispo, Bernardo Bonilauri, Bruno Dallagiovanna, Giordano Wosgrau Calloni
{"title":"Fibroblast Growth Factor 8 enhances the chondrogenesis of trunk neural crest cells: a possible gene regulatory network.","authors":"Raphaella Josino, Saloe Bispo, Bernardo Bonilauri, Bruno Dallagiovanna, Giordano Wosgrau Calloni","doi":"10.1387/ijdb.240189gc","DOIUrl":"https://doi.org/10.1387/ijdb.240189gc","url":null,"abstract":"<p><p>The neural crest (NC) is an embryonic cell population with high migratory capacity. It contributes to forming several organs and tissues, such as the craniofacial skeleton and the peripheral nervous system of vertebrates. Both pre-migratory and post-migratory NC cells are plastic, adopting multiple differentiation paths by responding to different inductive environmental signals. Cephalic neural crest cells (CNCCs) give rise to most of the cartilage and bone tissues in the head. On the other hand, the mesenchymal potential of trunk neural crest cells (TNCCs) is sparsely detected in some animal groups. The mesenchymal potential of TNCCs can be unveiled through specific environmental conditions of NC cultures. In this study, we present evidence that FGF8 treatment can foster increased chondrogenic differentiation of TNCCs, particularly during treatment at the migratory stage. Additionally, we conducted a transcriptomic analysis of TNCCs in the post-migratory stage, noting that exogenous FGF8 signaling can sustain multipotent status and, possibly, at the same time, a pro-cartilage regulatory gene network. Our results provide a more comprehensive understanding of the mechanisms underlying chondrogenic differentiation from TNCCs.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"135-143"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell number regulation occurs during the pre-gastrulation period of postimplantation development in double chimeric mouse embryos. 在双嵌合小鼠胚胎着床后发育的孕前期,细胞数量会发生调节。
The International journal of developmental biology Pub Date : 2024-12-12 DOI: 10.1387/ijdb.240138mm
Katarzyna Krawczyk, Magdalena Oślislok, Anna Gałązkiewicz, Marcin Szpila, Marek Maleszewski
{"title":"Cell number regulation occurs during the pre-gastrulation period of postimplantation development in double chimeric mouse embryos.","authors":"Katarzyna Krawczyk, Magdalena Oślislok, Anna Gałązkiewicz, Marcin Szpila, Marek Maleszewski","doi":"10.1387/ijdb.240138mm","DOIUrl":"https://doi.org/10.1387/ijdb.240138mm","url":null,"abstract":"<p><p>Aggregates of two mouse embryos produce viable offspring of normal size, indicating that there are mechanisms in the embryo that can downregulate their size to the size of the corresponding normal (single) embryos. Very little is known about the mechanisms controlling compensation for increased preimplantation size. Also, it is still elusive when exactly during development chimeric embryos regulate their size. Here, we determined the exact period of size regulation in chimeras. Using a chimeric embryo produced by aggregating two 8-cell stage embryos, we revealed that size regulation initiates shortly after implantation (E5.5) and ends with the start of gastrulation (E7.5). Importantly, processes that regulate cell number in chimeric embryos do not disturb morphogenesis, so that the formation of the proamniotic cavity occurs in parallel with size regulation.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"68 3","pages":"127-133"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histological characterisation of the horn bud region in 58 day old bovine fetuses. 58 天牛胎儿角芽区的组织学特征。
The International journal of developmental biology Pub Date : 2024-08-14 DOI: 10.1387/ijdb.240040ja
Johanna E Aldersey, Tong Chen, Kiro Petrovski, John L Williams, Cynthia D K Bottema
{"title":"Histological characterisation of the horn bud region in 58 day old bovine fetuses.","authors":"Johanna E Aldersey, Tong Chen, Kiro Petrovski, John L Williams, Cynthia D K Bottema","doi":"10.1387/ijdb.240040ja","DOIUrl":"10.1387/ijdb.240040ja","url":null,"abstract":"<p><p>The presence of horns in domestic ruminants, such as cattle, sheep and goats, has financial and welfare implications. The genetic interactions that lead to horn development are not known. Hornless, or polled, cattle occur naturally. The known causative DNA variants (Celtic, Friesian, Mongolian and Guarani) are in intergenic regions on bovine chromosome 1, but their functions are not known. It is thought that horns may be derived from cranial neural crest stem cells and the POLLED variants disrupt the migration or proliferation of these cells. Relaxin family peptide receptor 2 (<i>RXFP2</i>) is more highly expressed in developing horns in cattle compared to nearby skin and has been shown to play a role in horn development in sheep. However, the role of RXFP2 in horn formation is not understood. Histological analyses of cranial tissues from homozygous horned and polled cattle fetuses at day 58 of development was carried out to determine the differences in the structure of the horn bud region. Condensed cells were only observed in the horn bud mesenchyme of horned fetuses and could be the progenitor horn cells. The distribution of neural crest markers (SOX10 and NGFR) and RXFP2 between horned and polled tissues by immunohistochemistry was also analysed. However, SOX10 and NGFR were not detected in the condensed cells, and therefore, these cells are either not derived from the neural crest, or have differentiated and no longer express neural crest markers. SOX10 and NGFR were detected in the peripheral nerves, while RXFP2 was detected in peripheral nerves and in the horn bud epidermis. Previous research has shown that RXFP2 variants are associated with horn phenotypes in cattle an sheep. Therefore, the RXFP2 variants may affect the development of the epidermis or peripheral nerves in the horn bud.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"117-126"},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origin and Development of Interstitial Cells of Cajal. 卡贾尔间质细胞的起源与发展
The International journal of developmental biology Pub Date : 2024-08-12 DOI: 10.1387/ijdb.240057ar
Tara Sweet, Christeen M Abraham, Adam Rich
{"title":"Origin and Development of Interstitial Cells of Cajal.","authors":"Tara Sweet, Christeen M Abraham, Adam Rich","doi":"10.1387/ijdb.240057ar","DOIUrl":"10.1387/ijdb.240057ar","url":null,"abstract":"<p><p>The digestive tract is a series of organs with specific functions and specialized anatomy. Each organ is organized similarly with concentric layers of epithelial, connective, smooth muscle, and neural tissues. Interstitial cells of Cajal (ICC) are distributed in smooth muscle layers and contribute to the organization of repetitive and rhythmic smooth muscle contractions. Understanding ICC development is critical to understanding gastrointestinal motility patterns. Experiments determining ICC origin and development in mice, chicken, and humans are described, as well as what is known in the zebrafish. At least six types of ICC in the digestive tract have been described and ICC heterogeneity in adult tissues is reviewed. Factors required for ICC development and for maintenance of ICC subclasses are described. This review is suitable for those new to ICC development and physiology, especially those focused on using zebrafish and other model systems.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":" ","pages":"93-102"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信