紧张诱导的SIX1表达在人诱导多能干细胞胎盘前外胚层分化过程中的增强。

IF 1.3
Seungtae Kim, Ayumi Horikawa, Takayoshi Yamamoto, Tatsuo Michiue
{"title":"紧张诱导的SIX1表达在人诱导多能干细胞胎盘前外胚层分化过程中的增强。","authors":"Seungtae Kim, Ayumi Horikawa, Takayoshi Yamamoto, Tatsuo Michiue","doi":"10.1387/ijdb.240212tm","DOIUrl":null,"url":null,"abstract":"<p><p>Based on observations of <i>in vivo</i> morphogenesis, differentiation is expected to be regulated by mechanical cues. However, the detail mechanisms remain largely unknown. A previous study using human pluripotent stem cells (hPSCs) demonstrated that neural plate border (NPB) specification was enhanced by mechanical force. However, it is unknown whether mechanical force is also involved in the specification of the preplacodal ectoderm (PPE), which is derived from the NPB. Here, we verified the validity of the PPE induction method in stretch chambers, and conducted the stretching stimuli experiments. When repetitive stretching stimuli were applied from Day 2 to 10 or Day 2 to 7, expression of the PPE marker <i>SIX1</i> was increased. However, this increase was not observed when the stimuli were applied from Day 5 to 10, suggesting there is a critical period of sensitivity to mechanical forces. Immunofluorescent staining revealed lower active β-catenin signals in the cell sheet in the stretched samples compared to those in the controls, suggesting a negative correlation between stretching stimuli and Wnt signaling. Our finding suggests that mechanical force is important in PPE differentiation.</p>","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":"69 2","pages":"61-69"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tension-induced enhancement of SIX1 expression during preplacodal ectoderm differentiation from human induced pluripotent stem cells.\",\"authors\":\"Seungtae Kim, Ayumi Horikawa, Takayoshi Yamamoto, Tatsuo Michiue\",\"doi\":\"10.1387/ijdb.240212tm\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on observations of <i>in vivo</i> morphogenesis, differentiation is expected to be regulated by mechanical cues. However, the detail mechanisms remain largely unknown. A previous study using human pluripotent stem cells (hPSCs) demonstrated that neural plate border (NPB) specification was enhanced by mechanical force. However, it is unknown whether mechanical force is also involved in the specification of the preplacodal ectoderm (PPE), which is derived from the NPB. Here, we verified the validity of the PPE induction method in stretch chambers, and conducted the stretching stimuli experiments. When repetitive stretching stimuli were applied from Day 2 to 10 or Day 2 to 7, expression of the PPE marker <i>SIX1</i> was increased. However, this increase was not observed when the stimuli were applied from Day 5 to 10, suggesting there is a critical period of sensitivity to mechanical forces. Immunofluorescent staining revealed lower active β-catenin signals in the cell sheet in the stretched samples compared to those in the controls, suggesting a negative correlation between stretching stimuli and Wnt signaling. Our finding suggests that mechanical force is important in PPE differentiation.</p>\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":\"69 2\",\"pages\":\"61-69\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.240212tm\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/ijdb.240212tm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据对体内形态发生的观察,分化可能受到机械信号的调节。然而,其具体机制在很大程度上仍然未知。先前使用人多能干细胞(hPSCs)的研究表明,机械力可以增强神经板边界(NPB)的特异性。然而,目前尚不清楚机械力是否也参与了由NPB衍生的placodal前外胚层(PPE)的规范。在此,我们验证了PPE诱导方法在拉伸室中的有效性,并进行了拉伸刺激实验。当第2天至第10天或第2天至第7天施加重复性拉伸刺激时,PPE标记SIX1的表达增加。然而,当第5天至第10天施加刺激时,没有观察到这种增加,这表明存在对机械力敏感的关键时期。免疫荧光染色显示,与对照组相比,拉伸样品的细胞片中活性β-catenin信号较低,表明拉伸刺激与Wnt信号之间存在负相关。我们的研究结果表明,机械力在PPE分化中起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tension-induced enhancement of SIX1 expression during preplacodal ectoderm differentiation from human induced pluripotent stem cells.

Based on observations of in vivo morphogenesis, differentiation is expected to be regulated by mechanical cues. However, the detail mechanisms remain largely unknown. A previous study using human pluripotent stem cells (hPSCs) demonstrated that neural plate border (NPB) specification was enhanced by mechanical force. However, it is unknown whether mechanical force is also involved in the specification of the preplacodal ectoderm (PPE), which is derived from the NPB. Here, we verified the validity of the PPE induction method in stretch chambers, and conducted the stretching stimuli experiments. When repetitive stretching stimuli were applied from Day 2 to 10 or Day 2 to 7, expression of the PPE marker SIX1 was increased. However, this increase was not observed when the stimuli were applied from Day 5 to 10, suggesting there is a critical period of sensitivity to mechanical forces. Immunofluorescent staining revealed lower active β-catenin signals in the cell sheet in the stretched samples compared to those in the controls, suggesting a negative correlation between stretching stimuli and Wnt signaling. Our finding suggests that mechanical force is important in PPE differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信