非洲爪蟾伴侣蛋白介导的染色质组装和转录调控。

Takashi Onikubo, D. Shechter
{"title":"非洲爪蟾伴侣蛋白介导的染色质组装和转录调控。","authors":"Takashi Onikubo, D. Shechter","doi":"10.1387/IJDB.130188DS","DOIUrl":null,"url":null,"abstract":"Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.","PeriodicalId":94228,"journal":{"name":"The International journal of developmental biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis.\",\"authors\":\"Takashi Onikubo, D. Shechter\",\"doi\":\"10.1387/IJDB.130188DS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.\",\"PeriodicalId\":94228,\"journal\":{\"name\":\"The International journal of developmental biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1387/IJDB.130188DS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1387/IJDB.130188DS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

染色质是DNA和组蛋白的复合体,是真核生物基因组的生理形式。染色质通常对转录具有抑制作用,特别是在后生动物发育早期,当母体因素明确控制新的合子基因表达时。在重要的模式生物非洲爪蟾(Xenopus laevis)中,成熟的卵母细胞具有转录活性,但染色质组装率降低,而产卵和受精胚胎具有强大的染色质组装率,但转录抑制。随着dna -细胞质比在囊胚中期过渡(MBT)和合子基因组激活(ZGA)开始时降低,染色质组装过程发生变化,母体染色质成分随之减少。染色质组装部分是由组蛋白伴侣介导的,组蛋白伴侣储存母体组蛋白并将其释放到新的合子染色质中。在这里,我们回顾了关于青蛙胚胎和无细胞提取物中染色质和转录的文献,并重点介绍了母体和合子组蛋白沉积的作用及其与转录调控的关系。我们探索了非洲爪蟾胚胎使用的核心历史和最新文献,以及无细胞卵母细胞和卵提取物实验提供的组蛋白伴侣、染色质组装和转录调控之间相互作用的关键贡献。目前和未来对非洲爪蟾无细胞提取物的研究可能会为染色质组装和转录调控之间的相互作用提供重要的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis.
Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信