{"title":"Characteristics and functions of volatile organic compounds in the tripartite symbiotic system of <i>Gastrodia elata-Armillaria gallica-Rahnella aceris</i> HPDA25.","authors":"Ying Zhang, Tianrui Liu, Tiegui Nan, Zhongyi Hua, Yuyang Zhao, Yuan Yuan","doi":"10.1080/15592324.2024.2399426","DOIUrl":"10.1080/15592324.2024.2399426","url":null,"abstract":"<p><p>Tripartite interactions among plants, fungi, and bacteria are critical for maintaining plant growth and fitness, and volatile organic compounds (VOCs) play a significant role in these interactions. However, the functions of VOCs within the niche of mycoheterotrophic plants, which represent unique types of interactions, remain poorly understood. <i>Gastrodia elata</i>, a mycoheterotrophic orchid species, forms a symbiotic relationship with specific <i>Armillaria</i> species, serving as a model system to investigate this intriguing issue. <i>Rahnella aceris</i> HPDA25 is a plant growth-promoting bacteria isolated from <i>G. elata</i>, which has been found to facilitate the establishment of <i>G. elata-Armillaria</i> symbiosis. In this study, using the tripartite symbiotic system of <i>G. elata-Armillaria gallica-R. aceris</i> HPDA25, we investigate the role of VOCs in the interaction among mycoheterotrophic plants, fungi, and bacteria. Our results showed that 33 VOCs of HPDA25-inducible symbiotic <i>G. elata</i> elevated compared to non-symbiotic <i>G. elata</i>, indicating that VOCs indeed play a role in the symbiotic process. Among these, 21 VOCs were accessible, and six active VOCs showed complete growth inhibition activities against <i>A. gallica</i>, while <i>R. aceris</i> HPDA25 had no significant effect. In addition, three key genes of <i>G. elata</i> have been identified that may contribute to the increased concentration of six active VOCs. These results revealed for the first time the VOCs profile of <i>G. elata</i> and demonstrated its regulatory role in the tripartite symbiotic system involving <i>G. elata</i>, <i>Armillaria</i>, and bacteria.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2399426"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasmin Meeda, Ellen Harrison, Adam Monier, Glen Wheeler, Katherine E Helliwell
{"title":"Crossed wires: diatom phosphate sensing mechanisms coordinate nitrogen metabolism.","authors":"Yasmin Meeda, Ellen Harrison, Adam Monier, Glen Wheeler, Katherine E Helliwell","doi":"10.1080/15592324.2024.2404352","DOIUrl":"10.1080/15592324.2024.2404352","url":null,"abstract":"<p><p>Phytoplankton can encounter dynamic changes in their environment including fluctuating nutrient supply, and therefore require survival mechanisms to compete for such growth-limiting resources. Diatoms, single-celled eukaryotic microalgae, are typically first responders when crucial macronutrients phosphorus (P) and nitrogen (N) enter the marine environment and therefore must have tightly regulated nutrient sensory systems. While nutrient starvation responses have been described, comparatively little is known about diatom nutrient sensing mechanisms. We previously identified that the model diatoms <i>Phaeodactylum tricornutum</i> and <i>Thalassiosira pseudonana</i> use calcium (Ca<sup>2+</sup>) ions as a rapid intracellular signaling response following phosphate resupply. This response is evident only in phosphate deplete conditions, suggesting that it is coordinated in P-starved cells. Rapid increases in N uptake and assimilation pathways observed following phosphate resupply, indicate tight interplay between P and N signaling. To regulate such downstream changes, Ca<sup>2+</sup> ions must bind to Ca<sup>2+</sup> sensors following phosphate induced Ca<sup>2+</sup> signals, yet this molecular machinery is unknown. Here, we describe our findings in relation to known diatom P starvation signaling mechanisms and discuss their implications in the context of environmental macronutrient metadata and in light of recent developments in the field. We also consider the importance of studying phytoplankton nutrient signaling systems in the face of future ocean conditions.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2404352"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cytokinin signaling is involved in root hair elongation in response to phosphate starvation.","authors":"Hirotomo Takatsuka, Toshiki Amari, Masaaki Umeda","doi":"10.1080/15592324.2024.2305030","DOIUrl":"10.1080/15592324.2024.2305030","url":null,"abstract":"<p><p>Root hair, single-celled tubular structures originating from the epidermis, plays a vital role in the uptake of nutrients from the soil by increasing the root surface area. Therefore, optimizing root hair growth is crucial for plants to survive in fluctuating environments. Root hair length is determined by the action of various plant hormones, among which the roles of auxin and ethylene have been extensively studied. However, evidence for the involvement of cytokinins has remained elusive. We recently reported that the cytokinin-activated B-type response regulators, ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12 directly upregulate the expression of <i>ROOT HAIR DEFECTIVE 6-LIKE 4</i> (<i>RSL4</i>), which encodes a key transcription factor that controls root hair elongation. However, depending on the nutrient availability, it is unknown whether the ARR1/12-RSL4 pathway controls root hair elongation. This study shows that phosphate deficiency induced the expression of <i>RSL4</i> and increased the root hair length through ARR1/12, though the transcript and protein levels of ARR1/12 did not change. These results indicate that cytokinins, together with other hormones, regulate root hair growth under phosphate starvation conditions.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2305030"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kumudini M Meepagala, Caleb M Anderson, Natascha Techen, Stephen O Duke
{"title":"<i>Pantoea ananatis</i>, a plant growth stimulating bacterium, and its metabolites isolated from <i>Hydrocotyle umbellata</i> (dollarweed).","authors":"Kumudini M Meepagala, Caleb M Anderson, Natascha Techen, Stephen O Duke","doi":"10.1080/15592324.2024.2331894","DOIUrl":"10.1080/15592324.2024.2331894","url":null,"abstract":"<p><p>A bacterium growing on infected leaves of <i>Hydrocotyle umbellata</i>, commonly known as dollarweed, was isolated and identified as <i>Pantoea ananatis</i>. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, <i>N</i>-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a <i>Pantoea</i> species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of <i>P</i>. <i>ananatis</i> inoculum on the growth of plants. Treatment of <i>Lemna paucicostata</i> Hegelm plants with 4 × 10<sup>9</sup> colony forming units of <i>P</i>. <i>ananatis</i> stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both <i>Cucumis sativus</i> (cucumber) and <i>Sorghum bicolor</i> (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by <i>Pantoea ananatis</i> could be due to the provision of the IAA precursor indole.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2331894"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A library of electrophysiological responses in plants - a model of transversal education and open science.","authors":"Danae Madariaga, Derek Arro, Catalina Irarrázaval, Alejandro Soto, Felipe Guerra, Angélica Romero, Fabián Ovalle, Elsa Fedrigolli, Thomas DesRosiers, Étienne Serbe-Kamp, Timothy Marzullo","doi":"10.1080/15592324.2024.2310977","DOIUrl":"10.1080/15592324.2024.2310977","url":null,"abstract":"<p><p>Electrophysiology in plants is understudied, and, moreover, an ideal model for student inclusion at all levels of education. Here, we report on an investigation in open science, whereby scientists worked with high school students, faculty, and undergraduates from Chile, Germany, Serbia, South Korea, and the USA. The students recorded the electrophysiological signals of >15 plant species in response to a flame or tactile stimulus applied to the leaves. We observed that approximately 60% of the plants studied showed an electrophysiological response, with a delay of ~ 3-6 s after stimulus presentation. In preliminary conduction velocity experiments, we verified that observed signals are indeed biological in origin, with information transmission speeds of ~ 2-9 mm/s. Such easily replicable experiments can serve to include more investigators and students in contributing to our understanding of plant electrophysiology.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2310977"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Shen, Ting Yang, Yalin Du, Ning Hao, Jiajian Cao, Tao Wu, Chunhua Wang
{"title":"Research on the function of <i>CsMYB36</i> based on an effective hair root transformation system.","authors":"Xi Shen, Ting Yang, Yalin Du, Ning Hao, Jiajian Cao, Tao Wu, Chunhua Wang","doi":"10.1080/15592324.2024.2345983","DOIUrl":"https://doi.org/10.1080/15592324.2024.2345983","url":null,"abstract":"<p><p>The hairy root induction system was used to efficiently investigate gene expression and function in plant root. Cucumber is a significant vegetable crop worldwide, with shallow roots, few lateral roots, and weak root systems, resulting in low nutrient absorption and utilization efficiency. Identifying essential genes related to root development and nutrient absorption is an effective way to improve the growth and development of cucumbers. However, genetic mechanisms underlying cucumber root development have not been explored. Here, we report a novel, rapid, effective hairy root transformation system. Compared to the in vitro cotyledon transformation method, this method shortened the time needed to obtain transgenic roots by 13 days. Furthermore, we combined this root transformation method with CRISPR/Cas9 technology and validated our system by exploring the expression and function of <i>CsMYB36</i>, a pivotal gene associated with root development and nutrient uptake. The hairy root transformation system established in this study provides a powerful method for rapidly identifying essential genes related to root development in cucumber and other horticultural crop species. This advancement holds promise for expediting research on root biology and molecular breeding strategies, contributing to the broader understanding and improvements crop growth and development.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2345983"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamia Yakkou, Sofia Houida, Aicha El Baaboua, Serdar Bilen, Maryam Chelkha, Leyla Okyay Kaya, Abderrahim Aasfar, Fuad Ameen, Sartaj Ahmad Bhat, Mohammed Raouane, Souad Amghar, Abdellatif El Harti
{"title":"Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance.","authors":"Lamia Yakkou, Sofia Houida, Aicha El Baaboua, Serdar Bilen, Maryam Chelkha, Leyla Okyay Kaya, Abderrahim Aasfar, Fuad Ameen, Sartaj Ahmad Bhat, Mohammed Raouane, Souad Amghar, Abdellatif El Harti","doi":"10.1080/15592324.2024.2363126","DOIUrl":"10.1080/15592324.2024.2363126","url":null,"abstract":"<p><p>Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of <i>Aporrectodea molleri</i> and as a plant model <i>Zea mays</i> L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to <i>Pantoea vagans</i>, <i>Pseudomonas aeruginosa</i>, <i>Bacillus paramycoides</i>, and <i>Bacillus thuringiensis</i> have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2363126"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future.","authors":"Lauren A E Erland","doi":"10.1080/15592324.2024.2366545","DOIUrl":"10.1080/15592324.2024.2366545","url":null,"abstract":"<p><p>In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (<i>N</i>-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2366545"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CLE peptides act via the receptor-like kinase CRINKLY 4 in <i>Physcomitrium patens</i> gametophore development.","authors":"Alain Shumbusho, C Jill Harrison, Viktor Demko","doi":"10.1080/15592324.2024.2386502","DOIUrl":"10.1080/15592324.2024.2386502","url":null,"abstract":"<p><p>The CLAVATA pathway plays a key role in the regulation of multicellular shoot and root meristems in flowering plants. In Arabidopsis, CLAVATA 3-like signaling peptides (CLEs) act via receptor-like kinases CLAVATA 1 and CRINKLY 4 (CR4). In the moss <i>Physcomitrium patens</i>, PpCLAVATA and PpCR4 were previously studied independently and shown to play conserved roles in the regulation of cell proliferation and differentiation. The plant calpain DEFECTIVE KERNEL 1 (DEK1) has been identified as another key regulator of cell division and cell fate in vascular plants and bryophytes. The functional interaction between CLAVATA, CR4, and DEK1 remains unknown. Here, we show that <i>P. patens crinkly4</i> and <i>dek1</i> mutants respond differently to CLE peptide treatments suggesting their distinct roles in the CLAVATA pathway. Reduced CLAVATA-mediated suppression of leafy shoot growth in <i>Δcr4</i> mutants indicates that PpCR4 is involved in CLV3p perception, most likely as a receptor. The CLV3p strongly suppressed leaf vein development in <i>Δcr4</i> mutants, suggesting that other receptors are involved in these processes and indicating a potential role of PpCR4 in organ sensitization to CLEs.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2386502"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endogenous cAMP elevation in <i>Brassica napus</i> causes changes in phytohormone levels.","authors":"Tianming Li, Wenjing Jia, Song Peng, Yanhui Guo, Jinrui Liu, Xue Zhang, Panyu Li, Hanfeng Zhang, Ruqiang Xu","doi":"10.1080/15592324.2024.2310963","DOIUrl":"10.1080/15592324.2024.2310963","url":null,"abstract":"<p><p>In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (<i>Brassica napus</i> L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of <i>TAA1</i> and <i>CYP83B1</i> in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of <i>PR4</i> and <i>KIN2</i> expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2310963"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}