烟草促生长丛枝菌根真菌的筛选及转录组学分析。

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2025-02-19 DOI:10.1080/15592324.2025.2467935
Shuang-Lin Yang, Xiao-Xu Bi, Bo Huang, Ti-Yuan Xia, Li-Juan Deng, Xiao-Qin Luo, Yu Zhong, Yu-Ping Zhang, Ying-Ying Qian, Min Yin, Zhen Ren
{"title":"烟草促生长丛枝菌根真菌的筛选及转录组学分析。","authors":"Shuang-Lin Yang, Xiao-Xu Bi, Bo Huang, Ti-Yuan Xia, Li-Juan Deng, Xiao-Qin Luo, Yu Zhong, Yu-Ping Zhang, Ying-Ying Qian, Min Yin, Zhen Ren","doi":"10.1080/15592324.2025.2467935","DOIUrl":null,"url":null,"abstract":"<p><p>Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - <i>Acaulospora bireticulata</i>(Ab), <i>Septoglomus viscosum</i>(Sv), <i>Funneliformis mosseae</i>(Fm), <i>Claroideoglomus etunicatum</i>(Ce), <i>Rhizophagus intraradices</i>(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2467935"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845017/pdf/","citationCount":"0","resultStr":"{\"title\":\"Screening and transcriptomic profiling of tobacco growth-promoting arbuscular mycorrhizal fungi.\",\"authors\":\"Shuang-Lin Yang, Xiao-Xu Bi, Bo Huang, Ti-Yuan Xia, Li-Juan Deng, Xiao-Qin Luo, Yu Zhong, Yu-Ping Zhang, Ying-Ying Qian, Min Yin, Zhen Ren\",\"doi\":\"10.1080/15592324.2025.2467935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - <i>Acaulospora bireticulata</i>(Ab), <i>Septoglomus viscosum</i>(Sv), <i>Funneliformis mosseae</i>(Fm), <i>Claroideoglomus etunicatum</i>(Ce), <i>Rhizophagus intraradices</i>(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":\"20 1\",\"pages\":\"2467935\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845017/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2025.2467935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2467935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

烟草是中国许多地区种植的重要经济作物。丛枝菌根真菌(AMF)可以与烟草建立共生关系,调节烟草的生长。然而,本地AMF对烟草生长发育的影响及其共生机制尚不清楚。本研究通过盆栽接种试验,发现6种接种剂——双孔芽孢菌(Acaulospora bireticulata, Ab)、粘球孢菌(Septoglomus viscosum, Sv)、mosseae漏斗菌(Fm)、etunicatum Claroideoglomus etunicatum(Ce)、根食菌(Rhizophagus intraradices, Ri)和混合接种剂(H)均与烟草形成稳定的共生关系。这些接种剂提高了烟草叶片中SOD、POD、PPO和PAL的活性,增加了叶绿素含量、IAA含量、CTK含量、可溶性糖和脯氨酸水平,同时降低了丙二醛含量。值得注意的是,在这些接种剂中,Fm在烟草根系中表现出显著高于其他处理的菌根感染密度、丛枝丰度和土壤孢子密度。隶属函数分析证实,Fm对烟草的促生长作用最为显著。对照和接种Fm的转录组分析结果显示,烟草根和茎中有3903个基因表达上调,4196个基因表达下调。富集分析表明,这些基因大部分在生物学过程、分子功能和代谢等相关途径中被注释。此外,与生长素、细胞分裂素、抗氧化酶和类胡萝卜素相关的差异表达基因在各自的途径中显著富集,可能间接影响烟草植物生长的调控。本研究为AMF接种剂促进烟草生长的开发和应用提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening and transcriptomic profiling of tobacco growth-promoting arbuscular mycorrhizal fungi.

Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - Acaulospora bireticulata(Ab), Septoglomus viscosum(Sv), Funneliformis mosseae(Fm), Claroideoglomus etunicatum(Ce), Rhizophagus intraradices(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信