{"title":"Advances in understanding the interaction between <i>Solanaceae</i> NLR resistance proteins and the viral effector Avr.","authors":"Jianming Wei, Yunzhou Li, Xiangru Chen, Ping Tan, Tayeb Muhammad, Yan Liang","doi":"10.1080/15592324.2024.2382497","DOIUrl":"10.1080/15592324.2024.2382497","url":null,"abstract":"<p><p>The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of <i>Solanaceae</i> crops and the overall safety of horticultural produce. According to the \"gene-for-gene\" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2382497"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vajiheh Safavi-Rizi, Tina Uhlig, Felix Lutter, Hamid Safavi-Rizi, Franziska Krajinski-Barth, Severin Sasso
{"title":"Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of <i>Arabidopsis thaliana</i>.","authors":"Vajiheh Safavi-Rizi, Tina Uhlig, Felix Lutter, Hamid Safavi-Rizi, Franziska Krajinski-Barth, Severin Sasso","doi":"10.1080/15592324.2023.2300228","DOIUrl":"10.1080/15592324.2023.2300228","url":null,"abstract":"<p><p>The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated <i>Arabidopsis thaliana</i> without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (<i>HRA1</i>, <i>HRE2</i>) and three genes involved in fermentation (<i>SUS4</i>, <i>PDC1</i>, <i>ADH1</i>) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes <i>PGB1</i> and <i>PGB2</i>, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 10<sup>5</sup>-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, <i>HRA1</i>, <i>SUS4</i>, and <i>RAP2.3</i> were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2300228"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MYB4 in <i>Lilium pumilum</i> affects plant saline-alkaline tolerance.","authors":"Fanru Zhang, Xiaochao Zhang, Wenhao Wan, Xingyu Zhu, Miaoxin Shi, Ling Zhang, Fengshan Yang, Shumei Jin","doi":"10.1080/15592324.2024.2370724","DOIUrl":"10.1080/15592324.2024.2370724","url":null,"abstract":"<p><p><i>Lilium pumilum</i> DC (<i>L. pumilum</i> DC) plays an important role in the rational utilization of salinized soil. To explore the molecular mechanism of salt-tolerant <i>L. pumilum</i>, the <i>LpMYB4</i> was cloned. LpMYB4 close relationship with <i>Bambusa emeiensis</i> and <i>Zea mays MYB4</i> throughout the phylogenetic tree construction. LpMYB4 protein was found to be localized in the nucleus. Prokaryotic and eukaryotic bacterial solution resistance experiments proved that the exogenous introduction of <i>LpMYB4</i> made the overexpression strains obtain better survival ability under saline-alkaline stress. Compared with wild-type plants, tobacco plants overexpressing <i>LpMYB4</i> had better growth and lower leaf wilting and lodging, the content of chlorophyll was higher, the content of hydrogen peroxide and superoxide anion was lower, the activity of peroxidase and superoxide dismutase was higher and the relative conductivity was lower under saline-alkaline stress. The analysis of seed germination and seedling resistance of transgenic plants under salt stress showed that <i>LpMYB4</i> transgenic seeds were more tolerant to salt stress during germination and growth. Yeast two-hybrid and two-luciferase complementation experiments showed that LpMYB4 interacted with yeast two-hybrid and LpGPX6. The analysis of the role of <i>LpMYB4</i> in improving plant saline-alkali resistance is helpful to the transformation of plant germplasm resources and has great significance for agriculture and sustainable development.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2370724"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A pharmacological approach to investigating effector translocation in rice-<i>Magnaporthe</i> oryzae interactions.","authors":"Ely Oliveira-Garcia, Allison Jane Hamilton","doi":"10.1080/15592324.2024.2350869","DOIUrl":"10.1080/15592324.2024.2350869","url":null,"abstract":"<p><p>Fungal pathogens deliver effector proteins into living plant cells to suppress plant immunity and control plant processes that are needed for infection. During plant infection, the devastating rice blast fungus, <i>Magnaporthe oryzae</i>, forms the specialized biotrophic interfacial complex (BIC), which is essential for effector translocation. Cytoplasmic effectors are first focally secreted into BICs, and subsequently packaged into dynamic membranous effector compartments (MECs), then translocated via clathrin-mediated endocytosis (CME) into the host cytoplasm. This study demonstrates that clathrin-heavy chain inhibitors endosidin-9 (ES9) and endosidin-9-17 (ES9-17) blocked the internalization of the fluorescently labeled effectors Bas1 and Pwl2 in rice cells, leading to swollen BICs lacking MECs. In contrast, ES9-17 treatment had no impact on the localization pattern of the apoplastic effector Bas4. This study provides further evidence that cytoplasmic effector translocation occurs by CME in BICs, suggesting a potential role for <i>M. oryzae</i> effectors in co-opting plant endocytosis.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2350869"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FERONIA orchestrates P2K1-driven purinergic signaling in plant roots.","authors":"Joel M Sowders, Jeremy B Jewell, Kiwamu Tanaka","doi":"10.1080/15592324.2024.2370706","DOIUrl":"10.1080/15592324.2024.2370706","url":null,"abstract":"<p><p>Extracellular ATP (eATP) orchestrates vital processes in plants, akin to its role in animals. P2K1 is a crucial receptor mediating eATP effects. Immunoprecipitation tandem mass spectrometry data highlighted FERONIA's significant interaction with P2K1, driving us to explore its role in eATP signaling. Here, we investigated putative P2K1-interactor, FERONIA, which is a versatile receptor kinase pivotal in growth and stress responses. We employed a FERONIA loss-of-function mutant, <i>fer-4</i>, to dissect its effects on eATP signaling. Interestingly, <i>fer-4</i> showed distinct calcium responses compared to wild type, while eATP-responsive genes were constitutively upregulated in <i>fer-4</i>. Additionally, <i>fer-4</i> displayed insensitivity to eATP-regulated root growth and reduced cell wall accumulation. Together, these results uncover a role for FERONIA in regulating eATP signaling. Overall, our study deepens our understanding of eATP signaling, revealing the intricate interplay between P2K1 and FERONIA impacting the interface between growth and defense.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2370706"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies.","authors":"Minoti Gupta, Vinay Dwivedi, Swatantar Kumar, Ashish Patel, Parwiz Niazi, Virendra Kumar Yadav","doi":"10.1080/15592324.2024.2365576","DOIUrl":"10.1080/15592324.2024.2365576","url":null,"abstract":"<p><p>Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2365576"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141428553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The coordinated responses of host plants to diverse <i>N</i>-acyl homoserine lactones.","authors":"Yongming Duan, Min Han, Adam Schikora","doi":"10.1080/15592324.2024.2356406","DOIUrl":"10.1080/15592324.2024.2356406","url":null,"abstract":"<p><p>In nature, co-evolution shaped balanced entities of host plants and their associated microorganism. Plants maintain this balance by detecting their associated microorganism and coordinating responses to them. Quorum sensing (QS) is a widespread bacterial cell-to-cell communication mechanism to modulate the collective behavior of bacteria. As a well-characterized QS signal, <i>N</i>-acyl homoserine lactones (AHL) also influence plant fitness. Plants need to coordinate their responses to diverse AHL molecules since they might host bacteria producing various AHL. This opinion paper discusses plants response to a mixture of multiple AHL molecules. The function of various phytohormones and WRKY transcription factors seems to be characteristic for plants' response to multiple AHL. Additionally, the perspectives and possible approaches to facilitate further research and the application of AHL-producing bacteria are discussed.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2356406"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu
{"title":"Effects of high-temperature stress on gene expression related to photosynthesis in two jujube (<i>Ziziphus jujuba</i> Mill.) varieties.","authors":"Lei Yang, Xiaojuan Yang, Bingqi Shen, Juan Jin, Lili Li, Dingyu Fan, Subina Xiaokelaiti, Qing Hao, Jianxin Niu","doi":"10.1080/15592324.2024.2357367","DOIUrl":"10.1080/15592324.2024.2357367","url":null,"abstract":"<p><p>Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2357367"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring stress-tolerant plant growth-promoting rhizobacteria from groundnut rhizosphere soil in semi-arid regions of Ethiopia.","authors":"Asnake Beshah, Driba Muleta, Gudina Legese, Fassil Assefa","doi":"10.1080/15592324.2024.2365574","DOIUrl":"10.1080/15592324.2024.2365574","url":null,"abstract":"<p><p>The potential of rhizobacteria with plant growth promoting (PGP) traits in alleviating abiotic stresses, especially drought, is significant. However, their exploitation in the semi-arid regions of Ethiopian soils remains largely unexplored. This research aimed to isolate and evaluate the PGP potential of bacterial isolates collected from groundnut cultivation areas in Ethiopia. Multiple traits were assessed, including phosphate solubilization, indole-3-acetic acid (IAA) production, ammonia production, salt and heavy metal tolerance, drought tolerance, enzyme activities, hydrogen cyanide production, antibiotic resistance, and antagonistic activity against fungal pathogens. The identification of potent isolates was carried out using MALDI-TOF MS. Out of the 82 isolates, 63 were gram-negative and 19 were gram-positive. Among them, 19 isolates exhibited phosphate solubilization, with AAURB 34 demonstrating the highest efficiency, followed by AURB 12. Fifty-six isolates produce IAA in varying amounts and all isolates produce ammonia with AAURB12, AAURB19, and AAURB34 displaying strong production. Most isolates demonstrated tolerance to temperatures up to 40°C and salt concentrations up to 3%. Notably, AAURB12 and AAURB34 exhibited remarkable drought tolerance at an osmotic potential of -2.70 Mpa. When subjected to levels above 40%, the tested isolates moderately produced lytic enzymes and hydrogen cyanide. The isolates displayed resistance to antibiotics, except gentamicin, and all isolates demonstrated resistance to zinc, with 81-91% showing resistance to other heavy metals. AAURB34 and AAURB12 exhibited suppression against fungal pathogens, with percent inhibition of 38% and 46%, respectively. Using MALDI-TOF MS, the promising PGP isolates were identified as Bacillus megaterium, Bacillus pumilus, and Enterobacter asburiae. This study provides valuable insights into the potential of rhizobacteria as PGP agents for mitigating abiotic stresses and contribute to the understanding of sustainable agricultural practices in Ethiopia and similar regions facing comparable challenges.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2365574"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197918/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Okechukwu Samson Ezeh, Natsuki Hayami, Kana Mitai, Wasei Kodama, Satoshi Iuchi, Yoshiharu Y Yamamoto
{"title":"Requirement of two simultaneous environmental signals for activation of Arabidopsis <i>ELIP2</i> promoter in response to high light, cold, and UV-B stresses.","authors":"Okechukwu Samson Ezeh, Natsuki Hayami, Kana Mitai, Wasei Kodama, Satoshi Iuchi, Yoshiharu Y Yamamoto","doi":"10.1080/15592324.2024.2389496","DOIUrl":"10.1080/15592324.2024.2389496","url":null,"abstract":"<p><p>Arabidopsis EARLY LIGH-INDUCIBLE PROTEIN 2 (ELIP2) is a chlorophyll- and carotenoid-binding protein and is involved in photoprotection under stress conditions. Because its expression is induced through high light, cold, or UV-B stressors, its mechanism of induction has been studied. It is known that a functional unit found in the promoter, which is composed of Element B and Element A, is required and sufficient for full activation by these stressors. In this study, the role of each element in the unit was analyzed by introducing weak mutations in each element as synthetic promoters in addition to intensive repeat constructs of each single element. The results suggest that a stressor like cold stress generates two parallel signals in plant cells, and they merge at the promoter region for the activation of <i>ELIP2</i> expression, which constitutes an \"AND\" gate and has a potential to realize strong response with high specificity by an environmental trigger.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2389496"},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}