Journal of hazardous materials最新文献

筛选
英文 中文
pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O2/tripolyphosphate system. Fe(II)/O2/tripolyphosphate 系统中活性氧生成和污染物降解的 pH 值依赖性。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-16 DOI: 10.1016/j.jhazmat.2024.136174
Chengwu Zhang, Anqi Yang, Bing Qin, Wei Zhao, Chuipeng Kong, Chuanyu Qin
{"title":"pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O<sub>2</sub>/tripolyphosphate system.","authors":"Chengwu Zhang, Anqi Yang, Bing Qin, Wei Zhao, Chuipeng Kong, Chuanyu Qin","doi":"10.1016/j.jhazmat.2024.136174","DOIUrl":"10.1016/j.jhazmat.2024.136174","url":null,"abstract":"<p><p>It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O<sub>2</sub> by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O<sub>2</sub>/TPP system needs further investigation. In this study, we demonstrated that O<sub>2</sub><sup>•-</sup> and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O<sub>2</sub>/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)<sub>2</sub>]<sup>2-</sup>, which leads to a rapid conversion from O<sub>2</sub> and HO<sub>2</sub>• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)<sub>2</sub>]<sup>4-</sup> is taking the lead with which O<sub>2</sub><sup>•-</sup> is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O<sub>2</sub>/TPP system.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136174"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density. 锰(II)在低电流密度、低氧进化电位的阳极上增强有机污染物电氧化作用的独特作用。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-31 DOI: 10.1016/j.jhazmat.2024.136332
Erdan Hu, Yuhua Ye, Bing Wang, Hefa Cheng
{"title":"Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density.","authors":"Erdan Hu, Yuhua Ye, Bing Wang, Hefa Cheng","doi":"10.1016/j.jhazmat.2024.136332","DOIUrl":"10.1016/j.jhazmat.2024.136332","url":null,"abstract":"<p><p>This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO<sub>2</sub>-IrO<sub>2</sub>, Ti/Pt, and Ti/Ti<sub>4</sub>O<sub>7</sub>, as well as anodes with high OEP, namely, Ti/PbO<sub>2</sub>, Ti/SnO<sub>2</sub>, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm<sup>2</sup>), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136332"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. 分馏过程中溶解黑碳光活性的变化及其在光降解各种抗生素中的作用。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-11-17 DOI: 10.1016/j.jhazmat.2024.136435
Yaqi Kang, Zhenkun Chu, Xiaoyun Xie, Liangyu Li, Jiani Hu, Siting Li, Zhaowei Wang
{"title":"Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics.","authors":"Yaqi Kang, Zhenkun Chu, Xiaoyun Xie, Liangyu Li, Jiani Hu, Siting Li, Zhaowei Wang","doi":"10.1016/j.jhazmat.2024.136435","DOIUrl":"10.1016/j.jhazmat.2024.136435","url":null,"abstract":"<p><p>The composition of dissolved black carbon (DBC) could be influenced by adsorption on minerals, subsequently affecting DBC's photoactivity and the photoconversion of contaminants. This study investigated the changes in photoactivity of DBC after absorption on ferrihydrite at Fe/C ratios of 0, 1.75, 7.50, and 11.25, compared the influences of DBC<sub>0</sub> and DBC<sub>7.50</sub> on the photodegradation of four typical antibiotics (AB) including sulfadiazine, tetracycline, ofloxacin, and chloramphenicol. The selective adsorption led to the compounds with high aromaticity, high oxidation states, and more oxygen-containing functional groups being more favorably adsorbed on ferrihydrite, further causing the steady-state concentrations of <sup>3</sup>DBC*, <sup>1</sup>O<sub>2</sub>, and •OH respectively to drop from 1.83 × 10<sup>-13</sup> M, 7.45 × 10<sup>-13</sup> M, and 3.32 × 10<sup>-16</sup> M in DBC<sub>0</sub> to 1.22 × 10<sup>-13</sup> M, 0.93 × 10<sup>-13</sup> M and 2.30 × 10<sup>-16</sup> M in DBC<sub>11.25</sub>, while the light screening effect factor increased from 0.740-0.921 in DBC<sub>0</sub> with above four antibiotics to 0.775-0.970 for that of DBC<sub>11.25</sub>. Unexpectedly, DBC after adsorption played a dual role in the photodegradation of various antibiotics. This difference might be caused by antibiotics' chemical composition, functional groups interacting with reactive intermediates, and the overlap in UV-vis spectra between antibiotics and DBC. Our data are valuable for understanding the dynamic roles of DBC in the photodegradation of antibiotics.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136435"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis. 通过基因型和表型综合分析研究环境多媒体界面的抗生素耐药性。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-15 DOI: 10.1016/j.jhazmat.2024.136160
Chen-Xi Fu, Chen Chen, Qian Xiang, Yi-Fei Wang, Lu Wang, Feng-Yuan Qi, Dong Zhu, Hong-Zhe Li, Li Cui, Wei-Li Hong, Matthias C Rillig, Yong-Guan Zhu, Min Qiao
{"title":"Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis.","authors":"Chen-Xi Fu, Chen Chen, Qian Xiang, Yi-Fei Wang, Lu Wang, Feng-Yuan Qi, Dong Zhu, Hong-Zhe Li, Li Cui, Wei-Li Hong, Matthias C Rillig, Yong-Guan Zhu, Min Qiao","doi":"10.1016/j.jhazmat.2024.136160","DOIUrl":"10.1016/j.jhazmat.2024.136160","url":null,"abstract":"<p><p>Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D<sub>2</sub>O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136160"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enrichment and catalysis effect of 2D/2D g-C3N4/Ti3C2 for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism. 2D/2D g-C3N4/Ti3C2 在等离子体系统中促进有机物降解和重金属还原的富集和催化作用:揭示促进和氧化还原机制。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-11-15 DOI: 10.1016/j.jhazmat.2024.136510
Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo
{"title":"Enrichment and catalysis effect of 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism.","authors":"Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo","doi":"10.1016/j.jhazmat.2024.136510","DOIUrl":"10.1016/j.jhazmat.2024.136510","url":null,"abstract":"<p><p>This work proposes a novel plasma-assisted 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5 % and 73.1 % respectively when introducing 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>. Roles of·OH,·H,·O<sub>2</sub><sup>-</sup>, <sup>1</sup>O<sub>2</sub>, e<sup>-</sup>, and h<sup>+</sup> in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and <sup>1</sup>O<sub>2</sub> dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136510"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polystyrene nanoplastics enhance thrombosis through adsorption of plasma proteins. 聚苯乙烯纳米塑料通过吸附血浆蛋白促进血栓形成。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-15 DOI: 10.1016/j.jhazmat.2024.136168
Chao Sheng, Guozhen Wang, Zijia Liu, Yuchen Zheng, Zijie Zhao, Duo Tang, Wenzhuo Li, Ao Li, Qi Zong, Renhang Zhou, Xiaonan Hou, Mengfei Yao, Zhixiang Zhou
{"title":"Polystyrene nanoplastics enhance thrombosis through adsorption of plasma proteins.","authors":"Chao Sheng, Guozhen Wang, Zijia Liu, Yuchen Zheng, Zijie Zhao, Duo Tang, Wenzhuo Li, Ao Li, Qi Zong, Renhang Zhou, Xiaonan Hou, Mengfei Yao, Zhixiang Zhou","doi":"10.1016/j.jhazmat.2024.136168","DOIUrl":"10.1016/j.jhazmat.2024.136168","url":null,"abstract":"<p><p>Plastic products offer remarkable convenience for modern life. However, growing concerns are emerging regarding the potential health hazards posed by nanoplastics, which formed as plastics break down. Currently, the biological effects and mechanisms induced by nanoplastics are largely underexplored. In this study, we report that polystyrene nanoplastics can enter the bloodstream and enhance thrombus formation. Our findings show that polystyrene nanoplastics adsorb plasma proteins, particularly coagulation factor XII and plasminogen activator inhibitor-1, play a key role in this process, as demonstrated by proteomics, bioinformatic analyses, and molecular dynamics simulations. The adsorption of these proteins by nanoplastics is an essential factor in thrombosis enhancement. This newly uncovered pathway of protein adsorption leading to enhanced thrombosis provides new insights into the biological effects of nanoplastics, which may inform future safety and environmental risk assessment of plastics.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136168"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment. 用于超快降解地表水处理中新出现污染物的双层结构催化膜。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-31 DOI: 10.1016/j.jhazmat.2024.136333
Qieyuan Gao, Xinyao Jin, Xi Zhang, Junwei Li, Peng Liu, Peijie Li, Xinsheng Luo, Weijia Gong, Daliang Xu, Raf Dewil, Heng Liang, Bart Van der Bruggen
{"title":"Catalytic membrane with dual-layer structure for ultrafast degradation of emerging contaminants in surface water treatment.","authors":"Qieyuan Gao, Xinyao Jin, Xi Zhang, Junwei Li, Peng Liu, Peijie Li, Xinsheng Luo, Weijia Gong, Daliang Xu, Raf Dewil, Heng Liang, Bart Van der Bruggen","doi":"10.1016/j.jhazmat.2024.136333","DOIUrl":"10.1016/j.jhazmat.2024.136333","url":null,"abstract":"<p><p>The catalytic membrane-based oxidation-filtration process integrates physical separation and chemical oxidation, offering a highly efficient water purification strategy. However, the oxidation-filtration process is limited in practical applications due to the short residence time of milliseconds within the catalytic layer and the interference of coexisting organic pollutants in real water. Herein, a dual-layer membrane containing a top selective layer and a bottom catalytic layer was fabricated using an in situ co-casting method with a double-blade knife. Experimental results demonstrated that the selective layer rejected macromolecular organic pollutants, thereby alleviating their interference with bisphenol A (BPA) degradation. Concurrently, the catalytic layer activated peracetic acid oxidant and achieved a high BPA degradation exceeding 90 % in milliseconds with reactive oxygen species (especially •OH). The finite-element analysis confirmed a high-concentration reaction field occupying the pore cavity of the catalytic layer, enhancing collision probability between reactive oxygen species and BPA, i.e., the nano-confinement effect. Additionally, the dual-layer membrane achieved a long-term stable performance for emerging contaminant degradation in surface water treatment. This work underscores a novel catalytic membrane structure design for high-performance oxidation-filtration processes and elucidates its mechanisms underlying ultrafast degradation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136333"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines. 三聚氰胺促进铜-芬顿反应降解蒽环类化合物。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-02 DOI: 10.1016/j.jhazmat.2024.136035
Yixuan Zhao, Jiahui Zhao, Shuqin Liu, Dunqing Wang, Jian Liu, Fei Zhang, Xiangshu Chen
{"title":"Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines.","authors":"Yixuan Zhao, Jiahui Zhao, Shuqin Liu, Dunqing Wang, Jian Liu, Fei Zhang, Xiangshu Chen","doi":"10.1016/j.jhazmat.2024.136035","DOIUrl":"10.1016/j.jhazmat.2024.136035","url":null,"abstract":"<p><p>Melamine (MA) enhanced Cu-Fenton process was developed for the degradation of anthracyclines. Taking daunorubicin (DNR) degradation as an example, we found that the initial first-order apparent constant of Cu<sup>2+</sup>/MA/H<sub>2</sub>O<sub>2</sub> system with a molar ratio of 1:8 for Cu<sup>2+</sup>:MA was 5.2 times higher than that of conventional Cu<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> system. The in-situ reductive coordination between Cu<sup>2+</sup> and MA facilitated the generation and stabilization of Cu<sup>+</sup> species, thereby accelerating the rate-limiting step of Cu<sup>2+</sup>/Cu<sup>+</sup> conversion and maintaining high levels of Cu<sup>+</sup> during the degradation process. Moreover, pre-synthesized Cu<sup>+</sup>-MA complexes (e.g., CM-250) further enhanced the efficiency of the Cu-Fenton reaction by increasing both the Cu<sup>+</sup> proportion and MA chelation. The apparent activation energy for DNR degradation in CM-250 mediated Fenton reaction (15.9 kJ mol<sup>-1</sup>) was lower than that in systems involving Cu<sup>2+</sup>/MA (41.2 kJ mol<sup>-1</sup>) and Cu<sup>2+</sup> (65.6 kJ mol<sup>-1</sup>). Enhanced generation of various reactive oxygen species (·OH,·O<sub>2</sub><sup>-</sup>, and <sup>1</sup>O<sub>2</sub>) was confirmed, with <sup>1</sup>O<sub>2</sub> playing a dominant role, significantly improving both degradation rate and mineralization degree for DNR. MA-enhanced Cu-Fenton process also offers a convenient alternative to effectively remove other anthracyclines and organic micropollutants, holding great promise for advancing advanced oxidation processes as well as practical large-scale degradation applications targeting multiple pollutants.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136035"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. 原位生长的铜镍-MOF/镍泡沫催化剂,用于高效电化学硝酸盐还原成氨。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-03 DOI: 10.1016/j.jhazmat.2024.136036
Chenxia Yang, Ying Tang, Qian Yang, Bo Wang, Xianghao Liu, Yuxiang Li, Weixia Yang, Kunxuan Zhao, Gang Wang, Zongyuan Wang, Feng Yu
{"title":"Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia.","authors":"Chenxia Yang, Ying Tang, Qian Yang, Bo Wang, Xianghao Liu, Yuxiang Li, Weixia Yang, Kunxuan Zhao, Gang Wang, Zongyuan Wang, Feng Yu","doi":"10.1016/j.jhazmat.2024.136036","DOIUrl":"10.1016/j.jhazmat.2024.136036","url":null,"abstract":"<p><p>Reducing nitrate (NO<sub>3</sub><sup>-</sup>) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH<sub>3</sub>-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi<sub>0.75</sub>-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi<sub>0.75</sub>-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR). The CuNi<sub>0.75</sub>-MOF/NF catalyst exhibited excellent electrocatalytic NO<sub>3</sub>RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH<sub>3</sub> yield of 51.78 mg h<sup>-1</sup> cm<sup>-2</sup>. The <sup>15</sup>N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO<sub>3</sub>RR was the NO<sub>3</sub><sup>-</sup> in the electrolyte. The reaction pathway for the electrocatalytic NO<sub>3</sub>RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi<sub>0.75</sub>-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO<sub>3</sub>RR.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136036"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation. 对 pH 值驱动的 Fe(II)/nCP 在地下水修复中的自由基转化机理的深入研究。
Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-11-13 DOI: 10.1016/j.jhazmat.2024.136334
Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu
{"title":"Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation.","authors":"Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu","doi":"10.1016/j.jhazmat.2024.136334","DOIUrl":"10.1016/j.jhazmat.2024.136334","url":null,"abstract":"<p><p>Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H<sub>2</sub>O<sub>2</sub> source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H<sub>2</sub>O<sub>2</sub> production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H<sub>2</sub>O<sub>2</sub> was dramatically decreased. While the O<sub>2</sub> released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O<sub>2</sub><sup>-</sup>), which subsequently generate singlet oxygen (<sup>1</sup>O<sub>2</sub>). The formation pathway of •O<sub>2</sub><sup>-</sup> was tracked by O<sup>18</sup> isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136334"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信