Exposure characteristics and health risk differences of airborne viable microorganisms across different climate zones: Insights from eight typical cities in China.

IF 11.3
Journal of hazardous materials Pub Date : 2025-09-15 Epub Date: 2025-08-05 DOI:10.1016/j.jhazmat.2025.139440
Zhe Li, Gaoshan Zhang, Yanpeng Li
{"title":"Exposure characteristics and health risk differences of airborne viable microorganisms across different climate zones: Insights from eight typical cities in China.","authors":"Zhe Li, Gaoshan Zhang, Yanpeng Li","doi":"10.1016/j.jhazmat.2025.139440","DOIUrl":null,"url":null,"abstract":"<p><p>Viable pathogenic microorganisms in atmospheric particles pose notable health risks, while their exposure characteristics and health risks across climate zones remain unclear. This study collected 399 particulate samples from automobile air conditioning filters in eight Chinese cities across five climate zones, analyzing microbial concentration, viability, and pathogenicity via microbial culture, fluorescence staining, and high-throughput sequencing. Health risks were evaluated with quantitative microbial risk assessment (QMRA) method. Results revealed distinct microbial patterns. Proportion of viable microorganisms was highest in tropical monsoon climate region (42.58 %). Conversely, plateau and mountain climate region exhibited lower microbial viability (25.12 %) and bacterial culturability ((1.58 ± 0.41) × 10<sup>5</sup> CFU/g). Bacterial genera like Acinetobacter were consistent across climate zones. However, dominant fungal genera manifested significant differences while pathogenic fungi such as Aspergillus and Cryptococcus were more abundant in temperate continental climate region. These may be attributed to different sources and microbial biogeographical characteristics, such as latitudinal distribution pattern. Annual infection risk and disease burden exceeds threshold of 10<sup>-4</sup> and 10<sup>-6</sup> in temperate, subtropical and tropical monsoon climate regions. Dermal contact demonstrated higher health risk. These insights into exposure characteristics of viable microorganisms can offer data support and theoretical basis for improving the air quality evaluation system and control of potential health risks.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"496 ","pages":"139440"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Viable pathogenic microorganisms in atmospheric particles pose notable health risks, while their exposure characteristics and health risks across climate zones remain unclear. This study collected 399 particulate samples from automobile air conditioning filters in eight Chinese cities across five climate zones, analyzing microbial concentration, viability, and pathogenicity via microbial culture, fluorescence staining, and high-throughput sequencing. Health risks were evaluated with quantitative microbial risk assessment (QMRA) method. Results revealed distinct microbial patterns. Proportion of viable microorganisms was highest in tropical monsoon climate region (42.58 %). Conversely, plateau and mountain climate region exhibited lower microbial viability (25.12 %) and bacterial culturability ((1.58 ± 0.41) × 105 CFU/g). Bacterial genera like Acinetobacter were consistent across climate zones. However, dominant fungal genera manifested significant differences while pathogenic fungi such as Aspergillus and Cryptococcus were more abundant in temperate continental climate region. These may be attributed to different sources and microbial biogeographical characteristics, such as latitudinal distribution pattern. Annual infection risk and disease burden exceeds threshold of 10-4 and 10-6 in temperate, subtropical and tropical monsoon climate regions. Dermal contact demonstrated higher health risk. These insights into exposure characteristics of viable microorganisms can offer data support and theoretical basis for improving the air quality evaluation system and control of potential health risks.

不同气候带空气中活菌暴露特征及健康风险差异——来自中国8个典型城市的观察
大气颗粒中活的病原微生物构成显著的健康风险,而它们的暴露特征和跨气候带的健康风险尚不清楚。本研究从中国5个气候带8个城市的汽车空调过滤器中收集了399个颗粒物样本,通过微生物培养、荧光染色和高通量测序分析了微生物浓度、活力和致病性。采用定量微生物风险评价(QMRA)方法评价健康风险。结果显示不同的微生物模式。热带季风气候区活菌比例最高(42.58 %)。相反,高原和山地气候区微生物活力(25.12 %)和细菌培养率((1.58 ± 0.41)× 105 CFU/g)较低。像不动杆菌这样的细菌属在不同的气候带是一致的。但在温带大陆性气候区,优势真菌属存在显著差异,而致病真菌如曲霉菌和隐球菌更为丰富。这可能是由于不同的来源和微生物的生物地理特征,如纬度分布格局。在温带、亚热带和热带季风气候地区,年感染风险和疾病负担超过10-4和10-6的阈值。皮肤接触显示出更高的健康风险。这些对活菌暴露特性的认识可为完善空气质量评价体系和控制潜在健康风险提供数据支持和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信