Journal of hazardous materials最新文献

筛选
英文 中文
Interfacial charge demulsification endowed dual-network photocatalytic hydrogen-bonded PVA@agarose membranes for oil-water separation. 用于油水分离的双网络光催化氢键 PVA@AGarose 膜的界面电荷破乳作用。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-17 DOI: 10.1016/j.jhazmat.2024.135569
Jing Jing, Zhanjian Liu, Yuxin Fu, Haonan Liu, Xiguang Zhang, Meiling Li, Liyan Liu, Huaiyuan Wang
{"title":"Interfacial charge demulsification endowed dual-network photocatalytic hydrogen-bonded PVA@agarose membranes for oil-water separation.","authors":"Jing Jing, Zhanjian Liu, Yuxin Fu, Haonan Liu, Xiguang Zhang, Meiling Li, Liyan Liu, Huaiyuan Wang","doi":"10.1016/j.jhazmat.2024.135569","DOIUrl":"10.1016/j.jhazmat.2024.135569","url":null,"abstract":"<p><p>Hydrogel materials with hydrophilic cross-linked network exhibit remarkable super-wettability, enabling their widespread application in oily wastewater treatment. However, the single and loose structure lacks sufficient strength and porosity to resist long-term degradation. Herein, a structural synergistic molecular strategy was reported to introduce reinforcing phase structures and interfacial active sites into the polymer networks for long-term oil-water emulsion separation. The carbon skeleton was uniformly interspersed through the strongly hydrogen-bonded polymer chains via covalent bonds, resulting in a hydrogel network with high mechanical strength and exceptional flow conductivity, which maintained a separation flux of 1233 L m<sup>-2</sup> h<sup>-1</sup> after 20 separation cycles under gravitational force. Dense negative charges on the surface disrupted the internal charge stability of the oil-water emulsion, leading to remarkable demulsification with a separation efficiency exceeding 99 %. Simultaneously, the strong redox reaction of the photoheterojunction effectively removed organic dyes under visible light, enhancing the overall antifouling performance. This study provided a feasible strategy at the molecular level for optimizing the suitability of hydrogels for oil-water emulsion separation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135569"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. 纳米级外聚合物重新组装-捕获机制决定了水生动物在不同觅食栖息地接触全氟辛烷磺酸的对比模式:纳米可视化研究。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-13 DOI: 10.1016/j.jhazmat.2024.135515
Shuyan Xu, Pengfeng Zhu, Caiqin Wang, Daoyong Zhang, Ming Zhang, Xiangliang Pan
{"title":"Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study.","authors":"Shuyan Xu, Pengfeng Zhu, Caiqin Wang, Daoyong Zhang, Ming Zhang, Xiangliang Pan","doi":"10.1016/j.jhazmat.2024.135515","DOIUrl":"10.1016/j.jhazmat.2024.135515","url":null,"abstract":"<p><p>The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135515"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong synergistic and antagonistic effects of quinones and metal ions in oxidative potential (OP) determination by ascorbic acid (AA) assays. 通过抗坏血酸(AA)测定氧化潜能(OP)时,醌类化合物和金属离子具有很强的协同和拮抗作用。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-20 DOI: 10.1016/j.jhazmat.2024.135599
Eduardo José Dos Santos Souza, Khanneh Wadinga Fomba, Manuela van Pinxteren, Nabil Deabji, Hartmut Herrmann
{"title":"Strong synergistic and antagonistic effects of quinones and metal ions in oxidative potential (OP) determination by ascorbic acid (AA) assays.","authors":"Eduardo José Dos Santos Souza, Khanneh Wadinga Fomba, Manuela van Pinxteren, Nabil Deabji, Hartmut Herrmann","doi":"10.1016/j.jhazmat.2024.135599","DOIUrl":"10.1016/j.jhazmat.2024.135599","url":null,"abstract":"<p><p>A key challenge in oxidative potential (OP) assays is to accurately assess the cumulative impact of redox-active aerosol species rather than only their individual effects. This study investigates the OP of single and combined mixtures of 1,2-naphthoquinone (1,2-NQ), 1,4-naphthoquinone (1,4-NQ), 9,10-phenanthrenequinone (9,10-PQ), 1,4-benzoquinone (1,4-BQ), Cu, Fe, Mn, and Zn in standard ascorbic acid (OP<sup>AA</sup>) and the synthetic respiratory tract lining fluid (OP<sup>RTLF</sup>) assays. In both OP<sup>AA</sup> and OP<sup>RTLF</sup>, binary mixtures showed additive and synergistic effects in the presence of 1,2-NQ. The mixture of Cu and Zn showed substantial synergisms in both assays, while the mixtures in the absence of 1,2-NQ primarily induced antagonistic effects. For the first time, we propose linear equations to improve the prediction of OP values by considering the impacts of synergistic and antagonistic effects. Under this approach, we observed that the potential effects caused by binary mixtures in ambient particulate matter (PM) samples could account for up to 68 % of the PM-OP values in Fez, Morocco (OP<sub>m</sub><sup>AA</sup>: 0.34 nmol min<sup>-1</sup> µg<sup>-1</sup> and OP<sub>m</sub><sup>RTLF</sup>: 0.18 nmol min<sup>-1</sup> µg<sup>-1</sup>). The present study improves the understanding of effects of chemical interaction of potentially toxic substances that are important in the understanding of PM-induced oxidative stress in the human body.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135599"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates. 有氧铁转化导致腐殖酸-铁共沉淀物对六价铬的吸附减少和还原增强。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135595
Hui Wang, Fengping Liu, Yankun Zhang, Xueying Gong, Jinqi Zhu, Wenbing Tan, Ying Yuan, Jia Zhang, Honghan Chen, Beidou Xi
{"title":"Aerobic Fe transformation induced decrease in the adsorption and enhancement in the reduction of Cr(VI) by humic acid-ferric iron coprecipitates.","authors":"Hui Wang, Fengping Liu, Yankun Zhang, Xueying Gong, Jinqi Zhu, Wenbing Tan, Ying Yuan, Jia Zhang, Honghan Chen, Beidou Xi","doi":"10.1016/j.jhazmat.2024.135595","DOIUrl":"10.1016/j.jhazmat.2024.135595","url":null,"abstract":"<p><p>Humic substance (HS)-ferric iron (Fe(III)) coprecipitates are widespread organo-mineral associations in soils and aquifers and have the capacity to immobilize and detoxify Cr(VI). These coprecipitates undergo transformation owing to their thermodynamic instability; however, the effects of this transformation on their environmental behaviors remain unclear, particularly in aerobic environments. In this study, the aerobic transformation of humic acid (HA)-Fe(III) coprecipitates, a representative of HS-Fe(III) coprecipitates, was simulated. The environmental effect was then evaluated after conducting an adsorption-reduction batch experiment toward Cr(VI). The aerobic transformation characteristics, as well as the adsorption/reduction capacity of HA-Fe(III) coprecipitates, were found to depend strongly on their structures. In ferrihydrite (Fh)-like coprecipitates, amorphous Fh is readily transformed into crystalline hematite and goethite at aerobic environments, leading to a much lower specific surface area and adsorption capacity. However, this increasing degree of crystallization enhanced the inductive reduction ability towards Cr(VI) owing to the more significant shift of electron pairs in the FeOC bond toward the HA direction. In HS-like coprecipitates, Fe(III) always serves as a cation bridge connecting HA molecules, but can be reduced to Fe(II) by the associated HA after aerobic transformation. The produced Fe(II), therefore, drove the reduction of the adsorbed Cr(VI). These findings emphasize the pivotal role of aerobic transformation in enhancing the reduction capacity for Cr(VI), which opens a new avenue for the development of in-situ remediation agents for Cr(VI)-contaminated sites.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135595"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics. 肉眼观察汤普森无籽葡萄幼苗中的聚苯乙烯纳米塑料,并通过转录组学和代谢组学评估其影响。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-21 DOI: 10.1016/j.jhazmat.2024.135550
Songlin Zhang, Fuchun Zhang, Lu Cai, Na Xu, Chuan Zhang, Vivek Yadav, Xiaoming Zhou, Xinyu Wu, Haixia Zhong
{"title":"Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics.","authors":"Songlin Zhang, Fuchun Zhang, Lu Cai, Na Xu, Chuan Zhang, Vivek Yadav, Xiaoming Zhou, Xinyu Wu, Haixia Zhong","doi":"10.1016/j.jhazmat.2024.135550","DOIUrl":"10.1016/j.jhazmat.2024.135550","url":null,"abstract":"<p><p>Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135550"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis. 可的松对斑马鱼(Danio rerio)的影响:洞察肠道微生物群相互作用以及 DNA 损伤和细胞凋亡的分子机制。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-20 DOI: 10.1016/j.jhazmat.2024.135576
Jiefeng Tan, Lihua Yang, Meixin Ye, Yuxin Geng, Yanfang Guo, Hong Zou, Liping Hou
{"title":"Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis.","authors":"Jiefeng Tan, Lihua Yang, Meixin Ye, Yuxin Geng, Yanfang Guo, Hong Zou, Liping Hou","doi":"10.1016/j.jhazmat.2024.135576","DOIUrl":"10.1016/j.jhazmat.2024.135576","url":null,"abstract":"<p><p>Cortisone can enter aquatic ecosystems and pose a risk to organisms therein. However, few studies have explored the effects of cortisone on the gut microbiota of aquatic organisms. Here, we exposed zebrafish (Danio rerio) to cortisone at environmentally relevant concentrations (5.0, 50.0, or 500.0 ng L<sup>-1</sup>) for 60 days to explore its toxicological effects and their association with gut microbiota changes. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay revealed that exposure to 50 ng L<sup>-1</sup> cortisone significantly increased the intestinal cell apoptosis rate, 8-hydroxydeoxyguanosine contents, and caspase-3 and caspase-8 activities. Moreover, the transcriptome analysis results demonstrated a notable downregulation in the expression of most differentially expressed genes associated with apoptosis pathways, as well as changes in DNA replication, oxidative stress, and drug metabolism pathways; these results indicated the occurrence of cortisone-induced stress response in zebrafish. Molecular docking analysis revealed that cortisone can bind to caspase-3 through hydrogen bonds and hydrophobic interactions but that no such interactions occur between cortisone and caspase-8. Thus, cortisone may induce oxidative DNA damage and apoptosis by activating caspase-3. Finally, the 16S rRNA sequencing results demonstrated that cortisone significantly affected microbial community structures and functions in the intestinal ecosystem. These changes may indicate gut microbiota response to cortisone-induced intestinal damage and inflammation. In conclusion, the current results clarify the mechanisms underlying intestinal response to cortisone exposure and provide a basis for evaluating the health risks of cortisone in animals.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135576"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for sustainably reducing secondary pollutants in a typical industrial city in China: Co-benefit from controlling sources with high reduction potential beyond industrial process. 中国典型工业城市可持续减少二次污染物的证据:控制工业过程之外的高减排潜力源的共同效益。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-21 DOI: 10.1016/j.jhazmat.2024.135556
Yueyuan Niu, Yulong Yan, Jiaqi Dong, Ke Yue, Xiaolin Duan, Dongmei Hu, Junjie Li, Lin Peng
{"title":"Evidence for sustainably reducing secondary pollutants in a typical industrial city in China: Co-benefit from controlling sources with high reduction potential beyond industrial process.","authors":"Yueyuan Niu, Yulong Yan, Jiaqi Dong, Ke Yue, Xiaolin Duan, Dongmei Hu, Junjie Li, Lin Peng","doi":"10.1016/j.jhazmat.2024.135556","DOIUrl":"10.1016/j.jhazmat.2024.135556","url":null,"abstract":"<p><p>Under China's strict industrial control measures, the reduction of secondary pollutants (O<sub>3</sub> and secondary organic aerosols [SOA]) and precursors (volatile organic compounds [VOCs] and NOx) caused by industrial processes has encountered bottlenecks. In this study, the net O<sub>3</sub> formation rate (Net [O<sub>3</sub>]) in summer and the self-reaction rate between peroxy radicals (Self-Rnxs) in winter are used to characterize the formation potentials of O<sub>3</sub> and SOA, respectively. Assuming that the precursor reduction ratio based on emission inventories is approximately equal to that based on observed concentrations, this study combines emission inventory and observation-based model (OBM) methods to indicate the potential source of secondary pollutants reduction. The findings show that strict control measures implemented by local governments, particularly those targeting industrial processes and fossil fuel combustion, are effective in reducing VOCs and NOx emissions during summer, and the two sources result in 3.8 % and 5.3 % decrease in the Net (O<sub>3</sub>), respectively. Similarly, control measures focusing on industrial processes help to significantly reduce VOCs emissions during winter, resulting in an 8.0 % decrease in Self-Rnxs. However, current measures for industrial processes are stringent and have little potential for further reduction. Therefore, additional sources with higher reduction potentials beyond industrial processes should be subject to stringent controls in industrial cities. Given the limited emission reduction potential associated with industrial processes, this study provides perspectives for sustained reduction of secondary pollutants in industrial cities.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135556"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating automated machine learning and metabolic reprogramming for the identification of microplastic in soil: A case study on soybean. 整合自动机器学习和代谢重编程,识别土壤中的微塑料:大豆案例研究。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135555
Zhimin Liu, Weijun Wang, Yibo Geng, Yuting Zhang, Xuan Gao, Junfeng Xu, Xiaolu Liu
{"title":"Integrating automated machine learning and metabolic reprogramming for the identification of microplastic in soil: A case study on soybean.","authors":"Zhimin Liu, Weijun Wang, Yibo Geng, Yuting Zhang, Xuan Gao, Junfeng Xu, Xiaolu Liu","doi":"10.1016/j.jhazmat.2024.135555","DOIUrl":"10.1016/j.jhazmat.2024.135555","url":null,"abstract":"<p><p>The accumulation of polyethylene microplastic (PE-MPs) in soil can significantly impact plant quality and yield, as well as affect human health and food chain cycles. Therefore, developing rapid and effective detection methods is crucial. In this study, traditional machine learning (ML) and H2O automated machine learning (H2O AutoML) were utilized to offer a powerful framework for detecting PE-MPs (0.1 %, 1 %, and 2 % by dry soil weight) and the co-contamination of PE-MPs and fomesafen (a common herbicide) in soil. The development of the framework was based on the results of the metabolic reprogramming of soybean plants. Our study stated that traditional ML exhibits lower accuracy due to the challenges associated with optimizing complex parameters. H2O AutoML can accurately distinguish between clean soil and contaminated soil. Notably, H2O AutoML can detect PE-MPs as low as 0.1 % (with 100 % accuracy) and co-contamination of PE-MPs and fomesafen (with 90 % accuracy) in soil. The VIP and SHAP analyses of the H2O AutoML showed that PE-MPs and the co-contamination of PE-MPs and fomesafen significantly interfered with the antioxidant system and energy regulation of soybean. We hope this study can provide a reliable scientific basis for sustainable development of the environment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135555"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium. 以密度泛函理论为指导,高效识别对铟和锗具有更高选择性的苷元。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-19 DOI: 10.1016/j.jhazmat.2024.135523
Christian Hintersatz, Satoru Tsushima, Tobias Kaufer, Jerome Kretzschmar, Angela Thewes, Katrin Pollmann, Rohan Jain
{"title":"Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium.","authors":"Christian Hintersatz, Satoru Tsushima, Tobias Kaufer, Jerome Kretzschmar, Angela Thewes, Katrin Pollmann, Rohan Jain","doi":"10.1016/j.jhazmat.2024.135523","DOIUrl":"10.1016/j.jhazmat.2024.135523","url":null,"abstract":"<p><p>Siderophores are promising ligands for application in novel recycling and bioremediation technologies, as they can selectively complex a variety of metals. However, with over 250 known siderophores, the selection of suiting complexants in the wet lab is impractical. Thus, this study established a density functional theory (DFT) based approach to efficiently identify siderophores with increased selectivity towards target metals on the example of germanium and indium. Considering 239 structures, chemically similar siderophores were clustered, and their complexation reactions modeled utilizing DFT. The calculations revealed siderophores with, compared to the reference siderophore desferrioxamine B (DFOB), up to 128 % or 48 % higher selectivity for indium or germanium, respectively. Experimental validation of the method was conducted with fimsbactin A and agrobactin, demonstrating up to 40 % more selective indium binding and at least sevenfold better germanium binding than DFOB, respectively. The results generated in this study open the door for the utilization of siderophores in eco-friendly technologies for the recovery of many different critical metals from various industry waters and leachates or bioremediation approaches. This endeavor is greatly facilitated by applying the herein-created database of geometry-optimized siderophore structures as de novo modeling of the molecules can be omitted.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135523"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel visible-light activated photocatalytic ultrafiltration membrane for simultaneous separation and degradation of emerging contaminants. 用于同时分离和降解新兴污染物的新型可见光激活光催化超滤膜。
Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-24 DOI: 10.1016/j.jhazmat.2024.135634
Ran Li, Zhidong Wei, Peng Li, Yangbo Qiu, Chengyi Wang, Chao Wang, Long-Fei Ren, Jiahui Shao, Yiliang He
{"title":"Novel visible-light activated photocatalytic ultrafiltration membrane for simultaneous separation and degradation of emerging contaminants.","authors":"Ran Li, Zhidong Wei, Peng Li, Yangbo Qiu, Chengyi Wang, Chao Wang, Long-Fei Ren, Jiahui Shao, Yiliang He","doi":"10.1016/j.jhazmat.2024.135634","DOIUrl":"10.1016/j.jhazmat.2024.135634","url":null,"abstract":"<p><p>Emerging contaminants (ECs) in secondary effluent of wastewater treatment plants (WWTPs) have received increasing attention due to their adverse effects on aquatic ecosystems and human health. Herein, visible-light responsive photocatalyst TM (TiO<sub>2</sub> @NH<sub>2</sub>-MIL-101(Fe)) and resultant photocatalytic ultrafiltration (PUF, PVDF/TM) membrane were prepared to remove 32 typical compounds of antibiotics, 296 compounds of antibiotic resistance genes (ARGs), and their corresponding bacterial hosts. The construction of heterojunction photocatalyst promoted the electron transfer from NH<sub>2</sub>-MIL-101(Fe) to TiO<sub>2</sub> and the formation of N-TiO<sub>2</sub>, enhancing visible-light (λ ≥ 420 nm) photocatalytic activity. With highly-hydrophilic surface and delicately-regulated pore structure, the initial water permeance of optimal PUF membrane significantly increased to 3912.2 L/m<sup>2</sup>/h at 1.0 bar. Meanwhile, membrane retention (via adsorption, electrostatic interaction, and steric hindrance) was improved due to the narrowed pore size, highly-negative surface charge and abundant functional groups. Additionally, hydroxyl radical (•OH) was the dominant active reactive oxygen species (ROS) for ECs degradation, and the narrowed pore structure could serve as microreactors to increase ROS concentration and reduce migration distance. Consequently, the removal efficiencies of antibiotics, bacteria and ARGs were 86.5 %, 91.4 % and 91.8 %, respectively. Overall, this novel visible-light-activated PUF membrane expands membrane application, and has great potential in ECs treatment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135634"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信