Lei Su, Xinyue Dong, Junjie Peng, Hong Cheng, Nicholas J Craig, Bo Hu, Juan-Ying Li
{"title":"Segmentation of beach plastic fragments' contours based on self-organizing map and multi-shape descriptors: A rapid indication of fragmentation and wearing types.","authors":"Lei Su, Xinyue Dong, Junjie Peng, Hong Cheng, Nicholas J Craig, Bo Hu, Juan-Ying Li","doi":"10.1016/j.jhazmat.2024.135564","DOIUrl":"10.1016/j.jhazmat.2024.135564","url":null,"abstract":"<p><p>Environmental plastic fragments have been verified as byproducts of large plastic and its secondary pollutants including micro and nanoplastics. There are few quantitative studies available, but their contours have values for the weathering mechanisms. We used geometric descriptors, fractal dimensions, and Fourier descriptors to characterize field and artificial polyethylene and polypropylene samples as a means of investigating the contour characteristics. It provides a methodological framework for contour classification. Unsupervised classification was performed using self-organizing neural networks with size-invariance parameters. We revealed the isometric phenomenon of plastic fragments during fragmentation, i.e., that the degree of contour rounding and complexity increase and decrease, respectively, with decreasing fragment size. With an average error rate of 8.9 %, we can distinguish artificial samples from field samples. It was also validated by the difference in Carbonyl Index between groups. We propose a two-stage process for plastic fragmentation and give three types of contour features which were key in the description of fragmented contours, i.e., size, complexity, and rounding. Our work will improve the accuracy of characterizations regarding the weathering and fragmentation processes of certain kinds of plastic fragments. The contour parameters also have the potential to be applied in more realistic scenarios and varied polymers.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135564"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prabhakaran Srinivasan, Sushmitha P Sivaraman, Akhila Maheswari Mohan, Deepan Kumar Madhu, Pitchaiah K Chinaraga, C V S Brahmananda Rao, Sivaraman Nagarajan, Prabhakaran Deivasigamani
{"title":"Chromoionophoric molecular probe infused bimodal porous polymer rostrum as solid-state ocular sensor for the selective and expeditious optical sensing of ultra-trace toxic mercury ions.","authors":"Prabhakaran Srinivasan, Sushmitha P Sivaraman, Akhila Maheswari Mohan, Deepan Kumar Madhu, Pitchaiah K Chinaraga, C V S Brahmananda Rao, Sivaraman Nagarajan, Prabhakaran Deivasigamani","doi":"10.1016/j.jhazmat.2024.135483","DOIUrl":"10.1016/j.jhazmat.2024.135483","url":null,"abstract":"<p><p>This study presents a distinctive solid-state naked-eye colorimetric sensing approach by encapsulating a chromoionophoric probe onto a hybrid macro-/meso-pore polymer scaffold for fast and selective sensing of ultra-trace Hg(II). The customized structural/surface properties of the poly(VPy-co-TM) monolith are attained by specific proportions of 2-vinylpyridine (VPy), trimethylolpropane trimethacrylate (TM), and pore-tuning solvents. The interconnected porous network of poly(VPy-co-TM), inherent superior surface area and porosity, is captivating for the homogeneous/voluminous incorporation of probe molecules, i.e., 7-((4-methoxyphenyl)diazenyl)quinoline-8-ol (MPDQ), for the target-specific colorimetric detection. The structural morphology, surface topography, and phase characteristics of the bare poly(VPy-co-TM) monolith and MPDQ@poly(VPy-co-TM) sensor are examined using HR-TEM-SAED (High-Resolution Transmission Electron Microscopy - Selected Area Electron Diffraction), FE-SEM-EDAX (Field Emission Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), p-XRD (Powder X-Ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy), UV-Vis-DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy), and BET/BJH (Brunauer-Emmett-Teller / Barrett-Joyner-Halenda) analysis. The distinctive properties of the sensor reveal a constrained geometrical orientation of the MPDQ probe onto the long-range continuous monolithic network of meso-/-macropore template, enabling selective interaction with Hg(II) with peculiar color transfiguration from pale yellow to deep brown. The sensor demonstrates a linear spectral-color alliance in the 0-200 ppb concentration range for Hg(II), with quantification and detection limits of 0.63 and 0.19 ppb. The sensor efficacy is verified using certified contaminated water and tobacco samples, with excellent reusability, reliability, and reproducibility of ≥ 99.23 % (RSD ≤1.89 %) and ≥ 99.19 % (RSD ≤1.94 %) of Hg(II), respectively.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135483"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In vivo visualization of environmentally relevant microplastics and evaluation of gut barrier damages in Artemia franciscana.","authors":"Jin Il Kwak, Hanju Rhee, Lia Kim, Youn-Joo An","doi":"10.1016/j.jhazmat.2024.135596","DOIUrl":"10.1016/j.jhazmat.2024.135596","url":null,"abstract":"<p><p>Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135596"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eco-friendly and highly efficient PM<sub>0.3</sub> air filter made from nonwoven basalt fiber and electrospun nanocellulose fiber.","authors":"Desalegn Atalie, Ze-Xin Chen, Hui Li, Cun-Guang Liang, Ming-Cheng Gao, Xiao-Xi Cheng, Peng-Cheng Ma","doi":"10.1016/j.jhazmat.2024.135608","DOIUrl":"10.1016/j.jhazmat.2024.135608","url":null,"abstract":"<p><p>This study addresses the need for high-performance and sustainable air filters by developing a bio-based, high-efficiency particulate air (HEPA) filter. Current HEPA filters often rely on non-biodegradable materials, creating environmental burdens. In this paper, we presented a HEPA filter fabricated from natural basalt fiber (BF) and nanocellulose fiber. The developed filter featured a sandwich structure with electrospun nanocellulose fiber deposited onto a base BF layer, followed by a second BF layer and heat treatment. Various techniques were employed to characterize the obtained sample, and the results showed that the nonwoven BF fabric significantly reduced the pressure drop of the filter by up to 60 %. The nanocellulose fiber played a crucial role in achieving a remarkable filtration efficiency of 99.99 % for PM<sub>0.3</sub>. BF-based filter demonstrated exceptional fire resistance, hydrophobia, durability, and ease of cleaning, maintaining its effectiveness at temperatures up to 150 °C. Notably, it exhibited significantly better biodegradability than commercially available HEPA filters. By employing a hierarchical structure of sustainable basalt and cellulose fibers, this study paved the way for the development of next-generation hazardous particulate matter filters with exceptional performance in harsh conditions and reduced environmental impact.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135608"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real time monitoring of nerve agent mimics: Novel solid state emitter for enhanced precision and reliability.","authors":"Anju Ranolia, Kiran, Priyanka, Rahul Kumar Dhaka, Jayant Sindhu","doi":"10.1016/j.jhazmat.2024.135508","DOIUrl":"10.1016/j.jhazmat.2024.135508","url":null,"abstract":"<p><p>Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135508"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Childhood Helicobacter pylori infection: Impacts of environmental exposures and parental stress.","authors":"Chan Lu, Wen Deng, Zipeng Qiao, Wenying Sun, Wenhui Yang, Zijing Liu, Faming Wang","doi":"10.1016/j.jhazmat.2024.135584","DOIUrl":"10.1016/j.jhazmat.2024.135584","url":null,"abstract":"<p><strong>Background: </strong>Helicobacter pylori infection (HPI) is extremely common in the world, particularly in less developed areas, but the primary causes of childhood HPI are unspecified.</p><p><strong>Objectives: </strong>To determine the influences of exposure to home environmental factors (HEFs), outdoor air pollutants (OAPs), and parental stress (PS), as well as their interactions on children's HPI.</p><p><strong>Methods: </strong>We implemented a retrospective cohort study with 8689 preschoolers from nine districts at Changsha, China, was conducted using questionnaires to collect data of health and HEFs. Temperature and OAPs data were collected from ten and eight monitoring stations, individually. Temperature and OAPs exposures were calculated for all home addresses using the inversed distance weighted (IDW) model. Multiple logistic regression analysis was carried out to determine the separate and combined impacts of HEFs, OAPs, and PS on HPI.</p><p><strong>Results: </strong>Children's HPI was significantly associated with exposure to moisture-specific indoor allergens in one-year preceding conception, gestation, and first year, smoke-specific air pollution throughout life, and plant-specific allergens in previous year. Outdoor exposures to CO in the 7th-9th month before conception, as well as PM<sub>2.5</sub> in the second trimester and previous year, were associated with HPI, with ORs (95 % CIs) of 1.22 (1.05-1.41), 1.23 (1.03-1.46), and 1.33 (1.14-1.55). Parents' socioeconomic and psychological stress indicators were positively related to HPI. High socioeconomic indicators and psychological stresses increased the roles of indoor renovation and moisture indicators as well as outdoor SO<sub>2</sub>, PM<sub>2.5</sub> and O<sub>3</sub> on children's HPI over their entire lives. Parental psychological stress interacts with indoor renovation-specific air pollution, moisture- and plant-specific allergens, as well as outdoor traffic-related air pollution on HPI, during a critical time window in early life.</p><p><strong>Conclusions: </strong>Indoor and outdoor air pollutants, as well as allergens, separately and interactively exert important effects on childhood HPI, lending support to the \"(pre-) fetal origin of HPI\" hypothesis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135584"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihui Chen, Yucheng Liu, Lan Jiang, Chao Zhang, Xun Qian, Jie Gu, Zilin Song
{"title":"Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing.","authors":"Zhihui Chen, Yucheng Liu, Lan Jiang, Chao Zhang, Xun Qian, Jie Gu, Zilin Song","doi":"10.1016/j.jhazmat.2024.135588","DOIUrl":"10.1016/j.jhazmat.2024.135588","url":null,"abstract":"<p><p>The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135588"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms.","authors":"Xingfeng Cao, Gongduan Fan, Jing Luo, Ling Zhang, Shiyun Wu, Yixin Yao, Kai-Qin Xu","doi":"10.1016/j.jhazmat.2024.135461","DOIUrl":"10.1016/j.jhazmat.2024.135461","url":null,"abstract":"<p><p>Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH<sub>2</sub>-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH<sub>2</sub>-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH<sub>2</sub>-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O<sub>2</sub><sup>-</sup>) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135461"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng
{"title":"Preparation of low-cost sludge-based highly porous biochar for efficient removal of refractory pollutants from agrochemical and pharmaceutical wastewater.","authors":"Md Manik Mian, Wenya Ao, Lei Xiao, Jianzhong Xiao, Shubo Deng","doi":"10.1016/j.jhazmat.2024.135572","DOIUrl":"10.1016/j.jhazmat.2024.135572","url":null,"abstract":"<p><p>Producing a high-performance sludge biochar through a feasible method is a great challenge and is crucial for practicability. Herein, we reported a highly porous sludge biochar synthesized from agrochemical-pharmaceutical and municipal sludge blends through a novel pyrolysis-acid treatment-post pyrolysis method. The optimized biochar named ASMS91 obtained interconnected pores with a total pore volume of 0.894 cm<sup>3</sup>/g and a surface area of 691.4 m<sup>2</sup>/g through extended acid wash and subsequent post-pyrolysis, which is superior to non-activated sludge biochar. ASMS91 removed 45.3 % of wastewater COD (156 mg/L) in 24 h, which was rapid and higher performance than commercial activated carbon (1000 iodine number). This outstanding performance is due to its high adsorption ability of long-chain aliphatic compounds (e.g., 2,4-Di-tert-butylphenol, neophytadiene and eicosane) into mesopores, which accounts for 71.8 % of pore filling. ASMS91 was highly recyclable, and adsorption was reduced by only 5.3 % after the 4th cycle. It also outperformed other sludge biochar in literature in removing perfluorooctanoic acid (PFOA), 6:2 fluorotelomer sulfonate (6:2 FTS), sulfamethoxazole, methylene blue, and methylene orange. Finally, the feasibility of our proposed method was validated by a brief techno-economic analysis. This feasible approach may support future research regarding sludge valorization and low-cost chemical wastewater treatment.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135572"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexia Fundere, Andrew Rose, Feng Xiong, Kalai Mangai Muthukumarasamy, Yasemin Altuntas, Harika Dasari, Louis Villeneuve, Martin G Sirois, Jean-François Tanguay, Jean-Claude Tardif, Roddy Hiram
{"title":"Daily exposure to chlordecone, an organochlorine pesticide, increases cardiac fibrosis and atrial fibrillation vulnerability.","authors":"Alexia Fundere, Andrew Rose, Feng Xiong, Kalai Mangai Muthukumarasamy, Yasemin Altuntas, Harika Dasari, Louis Villeneuve, Martin G Sirois, Jean-François Tanguay, Jean-Claude Tardif, Roddy Hiram","doi":"10.1016/j.jhazmat.2024.135533","DOIUrl":"10.1016/j.jhazmat.2024.135533","url":null,"abstract":"<p><strong>Context: </strong>Chlordecone (CLD) is a carcinogenic organochlorine pesticide. CLD was shown to disturb the activity of cardiac Na<sup>+</sup>-K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-Mg<sup>2+</sup>-ATPase. Conditions affecting these transmembrane pumps are often associated with cardiac arrhythmias (CA). However, little is known about the role of CLD on atrial fibrillation (AF) incidence, the most common type of CA.</p><p><strong>Hypotheses: </strong>1) Daily ingestion of CLD induces arrhythmogenic cardiac remodeling. 2) A phase of CLD withdrawal can reduce CLD-induced AF susceptibility.</p><p><strong>Methods: </strong>Adult male Wistar rats (250 g-275 g) ingested daily-doses of CLD (0 μg/L, 0.1 μg/L, or 1 μg/L) diluted in their quotidian water for 4 weeks. From day (D)29 to D56, all rats received CLD-free water. Vulnerability to AF and cardiac function were evaluated at D28 and D56 by electrophysiological study, echocardiography, and optical-mapping. Levels of genes and proteins related to inflammation, fibrosis, and senescence were quantified by qPCR and immunoassays.</p><p><strong>Results: </strong>Twenty-eight days of CLD exposure were associated with significantly increased AF vulnerability compared to CLD-free rats. Contamination with 1 μg/L CLD significantly reduced atrial conduction velocity (ERP, APD). CLD-weaning normalized food consumption and weight intake. However, after the CLD-withdrawal period of 28 days, AF inducibility, atrial inflammation (IL6, IL1β), and atrial fibrosis (Masson's trichrome staining) remained significantly higher in rats exposed to 1 μg/L CLD compared to 0 μg/L.</p><p><strong>Conclusions: </strong>Prolonged CLD ingestion provokes atrial conduction slowing and increased risk of AF. Although CLD-weaning, some persistent damages occurred in the atrium like atrial fibrosis and atrial senescence signals, which are accompanied by atrial inflammation and arrhythmogenicity.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135533"},"PeriodicalIF":0.0,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}