产甲烷古菌中的汞甲基化:稳定培养和准确评估的方案。

IF 11.3
Journal of hazardous materials Pub Date : 2025-09-15 Epub Date: 2025-08-05 DOI:10.1016/j.jhazmat.2025.139424
Shaoyang Tao, Jun Gao, Yinyin Fang, Bin He, Yongguang Yin, Jianbo Shi, Yuxiang Mao, Ligang Hu
{"title":"产甲烷古菌中的汞甲基化:稳定培养和准确评估的方案。","authors":"Shaoyang Tao, Jun Gao, Yinyin Fang, Bin He, Yongguang Yin, Jianbo Shi, Yuxiang Mao, Ligang Hu","doi":"10.1016/j.jhazmat.2025.139424","DOIUrl":null,"url":null,"abstract":"<p><p>Although methanogenic archaea are among the oldest microorganisms capable of mercury methylation, their contribution to methylmercury (MeHg) production has only recently gained attention. Studies with laboratory-cultivated methanogens elucidate the transformation of inorganic mercury (Hg) into MeHg, thereby uncovering underlying microbial methylation mechanisms. However, this field faces challenges such as significant Hg loss and unstable culture systems, which impede accurate assessment of these processes. This study aims to develop a reliable low-Hg-loss cultivation protocol for Hg methylation by methanogens, enabling a more accurate evaluation of their contribution to MeHg production. Our findings demonstrate that redox potential is a critical factor for Hg methylation, affecting Hg speciation and microbial growth. Notably, titanium nitrilotriacetate (Ti(III)-NTA), a reducing agent used in prior studies, was identified as a primary cause of Hg loss, reducing 83.2 % of Hg(II) to elemental Hg(0) at 500 μM. Adding cysteine satisfied both the redox and sulfur requirements of methanogens. Under these optimized conditions, Methanospirillum hungatei JF-1 achieved the highest MeHg production of all methanogens, converting 75.7 % of Hg(II) to MeHg and 630.4 pmol MeHg/mg protein. Overall, this study establishes a stable culture system for investigating Hg methylation by methanogens and indicates that the role of methanogens in mercury methylation is more substantial than previously acknowledged.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"496 ","pages":"139424"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mercury methylation in methanogenic archaea: A protocol for stabilized cultivation and accurate assessment.\",\"authors\":\"Shaoyang Tao, Jun Gao, Yinyin Fang, Bin He, Yongguang Yin, Jianbo Shi, Yuxiang Mao, Ligang Hu\",\"doi\":\"10.1016/j.jhazmat.2025.139424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although methanogenic archaea are among the oldest microorganisms capable of mercury methylation, their contribution to methylmercury (MeHg) production has only recently gained attention. Studies with laboratory-cultivated methanogens elucidate the transformation of inorganic mercury (Hg) into MeHg, thereby uncovering underlying microbial methylation mechanisms. However, this field faces challenges such as significant Hg loss and unstable culture systems, which impede accurate assessment of these processes. This study aims to develop a reliable low-Hg-loss cultivation protocol for Hg methylation by methanogens, enabling a more accurate evaluation of their contribution to MeHg production. Our findings demonstrate that redox potential is a critical factor for Hg methylation, affecting Hg speciation and microbial growth. Notably, titanium nitrilotriacetate (Ti(III)-NTA), a reducing agent used in prior studies, was identified as a primary cause of Hg loss, reducing 83.2 % of Hg(II) to elemental Hg(0) at 500 μM. Adding cysteine satisfied both the redox and sulfur requirements of methanogens. Under these optimized conditions, Methanospirillum hungatei JF-1 achieved the highest MeHg production of all methanogens, converting 75.7 % of Hg(II) to MeHg and 630.4 pmol MeHg/mg protein. Overall, this study establishes a stable culture system for investigating Hg methylation by methanogens and indicates that the role of methanogens in mercury methylation is more substantial than previously acknowledged.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"496 \",\"pages\":\"139424\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.139424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然产甲烷古菌是最古老的能够产生汞甲基化的微生物之一,但它们对甲基汞(MeHg)产生的贡献直到最近才引起人们的注意。对实验室培养的产甲烷菌的研究阐明了无机汞(Hg)向甲基汞的转化,从而揭示了潜在的微生物甲基化机制。然而,这一领域面临着巨大的汞损失和不稳定的培养系统等挑战,这阻碍了对这些过程的准确评估。本研究旨在开发一种可靠的低汞损失的甲烷菌汞甲基化培养方案,使其能够更准确地评估其对甲烷生成的贡献。我们的研究结果表明,氧化还原电位是汞甲基化的关键因素,影响汞的形态形成和微生物的生长。值得注意的是,硝基三乙酸钛(Ti(III)-NTA)是之前研究中使用的还原剂,被认为是汞损失的主要原因,在500 μM下,将83.2 %的汞(II)还原为单质汞(0)。添加半胱氨酸同时满足产甲烷菌对氧化还原和硫的需求。在此优化条件下,hungatei Methanospirillum JF-1的MeHg产量是所有产甲烷菌中最高的,将75.7 %的Hg(II)转化为MeHg和630.4 pmol MeHg/mg蛋白。总的来说,本研究为研究甲烷菌汞甲基化建立了一个稳定的培养体系,并表明甲烷菌在汞甲基化中的作用比以前认为的更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mercury methylation in methanogenic archaea: A protocol for stabilized cultivation and accurate assessment.

Although methanogenic archaea are among the oldest microorganisms capable of mercury methylation, their contribution to methylmercury (MeHg) production has only recently gained attention. Studies with laboratory-cultivated methanogens elucidate the transformation of inorganic mercury (Hg) into MeHg, thereby uncovering underlying microbial methylation mechanisms. However, this field faces challenges such as significant Hg loss and unstable culture systems, which impede accurate assessment of these processes. This study aims to develop a reliable low-Hg-loss cultivation protocol for Hg methylation by methanogens, enabling a more accurate evaluation of their contribution to MeHg production. Our findings demonstrate that redox potential is a critical factor for Hg methylation, affecting Hg speciation and microbial growth. Notably, titanium nitrilotriacetate (Ti(III)-NTA), a reducing agent used in prior studies, was identified as a primary cause of Hg loss, reducing 83.2 % of Hg(II) to elemental Hg(0) at 500 μM. Adding cysteine satisfied both the redox and sulfur requirements of methanogens. Under these optimized conditions, Methanospirillum hungatei JF-1 achieved the highest MeHg production of all methanogens, converting 75.7 % of Hg(II) to MeHg and 630.4 pmol MeHg/mg protein. Overall, this study establishes a stable culture system for investigating Hg methylation by methanogens and indicates that the role of methanogens in mercury methylation is more substantial than previously acknowledged.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信