Tailoring lignocellulose-derived biochar for peroxymonosulfate-based catalytic environments: Optimizing active sites, revealing activation mechanisms, and advancing groundwater remediation applications.

IF 11.3
Journal of hazardous materials Pub Date : 2025-09-15 Epub Date: 2025-08-04 DOI:10.1016/j.jhazmat.2025.139417
Jun Bo Zhang, Chaomeng Dai, Jiajun Hu, Jixiang Li, Min-Tian Gao, Yeap Swee Pin, Kah Hon Leong, Ken-Lin Chang, Xing Song Xu, Xu Jiang
{"title":"Tailoring lignocellulose-derived biochar for peroxymonosulfate-based catalytic environments: Optimizing active sites, revealing activation mechanisms, and advancing groundwater remediation applications.","authors":"Jun Bo Zhang, Chaomeng Dai, Jiajun Hu, Jixiang Li, Min-Tian Gao, Yeap Swee Pin, Kah Hon Leong, Ken-Lin Chang, Xing Song Xu, Xu Jiang","doi":"10.1016/j.jhazmat.2025.139417","DOIUrl":null,"url":null,"abstract":"<p><p>Biochar derived from lignocellulosic biomass (LB) has shown broad application prospects in the field of peroxymonosulfate (PMS) catalysis, but the regulation mechanism of its catalytic active sites (e.g., C=O group) and LB components (cellulose, hemicellulose, and lignin) remains to be systematically elucidated. In this study, a laccase-mediated directional regulation strategy of LB components was innovatively proposed to target the design of biochar rich in the C=O group. Using wheat straw (WS) as a model feedstock, the properties and performance of biochar derived from native WS (BC-WS) and laccase-pretreated WS residue (BC-LR) were compared. Laccase pretreatment significantly enhanced the C=O group content of BC-LR by 213 %, achieved through a 27 % reduction in the relative lignin content and a corresponding increase in cellulose proportion. BC-LR demonstrated superior catalytic activity and reactive oxygen species yield than BC-WS in PMS activation, with strong positive correlations observed between its C=O content and phenol degradation kinetics (R<sup>2</sup>=0.9145) as well as PMS decomposition kinetics (R<sup>2</sup>=0.9957). Mechanistic investigations revealed that C=O-mediated non-radical pathway (including <sup>1</sup>O<sub>2</sub> and surface electron transfer) and adsorbed carbon transfer pathway dominated the phenol removal process in the BC-LR/PMS system. Notably, the BC-LR/PMS system exhibited broad-spectrum degradation of typical pollutants such as bisphenol F, o-phenylphenol, and naproxen. In addition, the system exhibited robust performance in dynamic remediation experiments under diverse hydrogeological conditions, achieving high efficiency in complex environments. This study elucidates the critical role of LB components in determining the C=O content and catalytic performance of biochar, providing a foundation for the tailored design of high-performance biochar for PMS catalytic environments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"496 ","pages":"139417"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar derived from lignocellulosic biomass (LB) has shown broad application prospects in the field of peroxymonosulfate (PMS) catalysis, but the regulation mechanism of its catalytic active sites (e.g., C=O group) and LB components (cellulose, hemicellulose, and lignin) remains to be systematically elucidated. In this study, a laccase-mediated directional regulation strategy of LB components was innovatively proposed to target the design of biochar rich in the C=O group. Using wheat straw (WS) as a model feedstock, the properties and performance of biochar derived from native WS (BC-WS) and laccase-pretreated WS residue (BC-LR) were compared. Laccase pretreatment significantly enhanced the C=O group content of BC-LR by 213 %, achieved through a 27 % reduction in the relative lignin content and a corresponding increase in cellulose proportion. BC-LR demonstrated superior catalytic activity and reactive oxygen species yield than BC-WS in PMS activation, with strong positive correlations observed between its C=O content and phenol degradation kinetics (R2=0.9145) as well as PMS decomposition kinetics (R2=0.9957). Mechanistic investigations revealed that C=O-mediated non-radical pathway (including 1O2 and surface electron transfer) and adsorbed carbon transfer pathway dominated the phenol removal process in the BC-LR/PMS system. Notably, the BC-LR/PMS system exhibited broad-spectrum degradation of typical pollutants such as bisphenol F, o-phenylphenol, and naproxen. In addition, the system exhibited robust performance in dynamic remediation experiments under diverse hydrogeological conditions, achieving high efficiency in complex environments. This study elucidates the critical role of LB components in determining the C=O content and catalytic performance of biochar, providing a foundation for the tailored design of high-performance biochar for PMS catalytic environments.

裁剪木质纤维素衍生的生物炭用于过氧单硫酸盐基催化环境:优化活性位点,揭示激活机制,推进地下水修复应用。
木质纤维素生物质(LB)衍生的生物炭在过氧单硫酸盐(PMS)催化领域显示出广阔的应用前景,但其催化活性位点(如C=O基团)和LB组分(纤维素、半纤维素和木质素)的调控机制尚待系统阐明。本研究创新性地提出了漆酶介导的LB组分定向调控策略,针对富C=O组生物炭的设计。以小麦秸秆(WS)为模型原料,比较了天然WS (BC-WS)和漆酶预处理的WS残渣(BC-LR)制备的生物炭的性能。漆酶预处理使BC-LR的C=O基团含量显著提高了213 %,这是通过降低相对木质素含量27 %和相应增加纤维素比例实现的。BC-LR对PMS的催化活性和活性氧产率均优于BC-WS,其C=O含量与苯酚降解动力学(R2=0.9145)和PMS分解动力学(R2=0.9957)呈正相关。机理研究表明,BC-LR/PMS体系中,C= o介导的非自由基途径(包括1O2和表面电子转移)和吸附碳转移途径主导了苯酚的去除过程。值得注意的是,BC-LR/PMS系统对双酚F、邻苯酚和萘普生等典型污染物具有广谱降解能力。此外,该系统在不同水文地质条件下的动态修复实验中表现出稳健的性能,在复杂环境下取得了较高的修复效率。本研究阐明了LB组分在决定生物炭C=O含量和催化性能中的关键作用,为PMS催化环境下高性能生物炭的定制设计提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信