ImmunoHorizons最新文献

筛选
英文 中文
TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice. TCDD 和 CH223191 可改变 T 细胞平衡,但不能诱导成年狼疮小鼠的抗炎反应。
ImmunoHorizons Pub Date : 2024-02-01 DOI: 10.4049/immunohorizons.2300023
Fernando Gutierrez, Quiyana M Murphy, Brianna K Swartwout, Kaitlin A Read, Michael R Edwards, Leila Abdelhamid, Xavier Cabana-Puig, James C Testerman, Tian Xu, Ran Lu, Pavly Amin, Thomas E Cecere, Christopher M Reilly, Kenneth J Oestreich, Stanca M Ciupe, Xin M Luo
{"title":"TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice.","authors":"Fernando Gutierrez, Quiyana M Murphy, Brianna K Swartwout, Kaitlin A Read, Michael R Edwards, Leila Abdelhamid, Xavier Cabana-Puig, James C Testerman, Tian Xu, Ran Lu, Pavly Amin, Thomas E Cecere, Christopher M Reilly, Kenneth J Oestreich, Stanca M Ciupe, Xin M Luo","doi":"10.4049/immunohorizons.2300023","DOIUrl":"10.4049/immunohorizons.2300023","url":null,"abstract":"<p><p>Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139731250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Antibody Imprinting Hypothesis among Canadian Paramedics after SARS-CoV-2 Omicron Variant Circulation. 调查 SARS-CoV-2 Omicron 变体传播后加拿大辅助医务人员的抗体印记假说。
ImmunoHorizons Pub Date : 2024-02-01 DOI: 10.4049/immunohorizons.2400010
Michael Asamoah-Boaheng, Brian Grunau, Mohammad Ehsanul Karim, Iryna Kayda, Justin Yap, Katherine Bessai, David M Goldfarb
{"title":"Investigating the Antibody Imprinting Hypothesis among Canadian Paramedics after SARS-CoV-2 Omicron Variant Circulation.","authors":"Michael Asamoah-Boaheng, Brian Grunau, Mohammad Ehsanul Karim, Iryna Kayda, Justin Yap, Katherine Bessai, David M Goldfarb","doi":"10.4049/immunohorizons.2400010","DOIUrl":"10.4049/immunohorizons.2400010","url":null,"abstract":"<p><p>Recent research has highlighted the Omicron variant's capacity to evade immune protection conferred by wild-type (WT) mRNA vaccines. Despite this observation, the potential involvement of antigenic sin phenomena remains unclear. Our hypothesis posited that a greater number of prior WT vaccine doses might lead to reduced anti-Omicron neutralization Abs following Omicron infection. To investigate this, we analyzed blood samples from human participants in the COVID-19 Occupational Risk, Seroprevalence, and Immunity among Paramedics (CORSIP) study who had received at least one WT mRNA vaccine before contracting Omicron. The exposure variable was the number of WT mRNA vaccines administered, and the outcome was the angiotensin-converting enzyme 2 (ACE-2) percent inhibition specific to the BA.4/BA.5 Omicron Ag. Contrary to expectations, our findings revealed that more WT-based vaccines were associated with an enhanced Omicron-specific immune response.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916361/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of hnRNP A1-Serine 199 Is Not Required for T Cell Differentiation and Function. hnRNP A1-丝氨酸 199 的磷酸化不是 T 细胞分化和功能所必需的。
ImmunoHorizons Pub Date : 2024-02-01 DOI: 10.4049/immunohorizons.2300074
Tristan L A White, Ye Jin, Sean D A Roberts, Matthew J Gable, Penelope A Morel
{"title":"Phosphorylation of hnRNP A1-Serine 199 Is Not Required for T Cell Differentiation and Function.","authors":"Tristan L A White, Ye Jin, Sean D A Roberts, Matthew J Gable, Penelope A Morel","doi":"10.4049/immunohorizons.2300074","DOIUrl":"10.4049/immunohorizons.2300074","url":null,"abstract":"<p><p>hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. B-1a细胞而非边缘区B细胞参与了Lyn-/-小鼠自反应性浆细胞的积累
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300089
Kristina Ottens, Jalyn Schneider, Anne B Satterthwaite
{"title":"B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice.","authors":"Kristina Ottens, Jalyn Schneider, Anne B Satterthwaite","doi":"10.4049/immunohorizons.2300089","DOIUrl":"10.4049/immunohorizons.2300089","url":null,"abstract":"<p><p>Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CTLA-4 Checkpoint Inhibition Improves Sepsis Survival in Alcohol-Exposed Mice. CTLA-4 检查点抑制可提高酒精暴露小鼠的败血症存活率
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300060
Cameron W Paterson, Katherine T Fay, Ching-Wen Chen, Nathan J Klingensmith, Melissa B Gutierrez, Zhe Liang, Craig M Coopersmith, Mandy L Ford
{"title":"CTLA-4 Checkpoint Inhibition Improves Sepsis Survival in Alcohol-Exposed Mice.","authors":"Cameron W Paterson, Katherine T Fay, Ching-Wen Chen, Nathan J Klingensmith, Melissa B Gutierrez, Zhe Liang, Craig M Coopersmith, Mandy L Ford","doi":"10.4049/immunohorizons.2300060","DOIUrl":"10.4049/immunohorizons.2300060","url":null,"abstract":"<p><p>Chronic alcohol use increases morbidity and mortality in the setting of sepsis. Both chronic alcohol use and sepsis are characterized by immune dysregulation, including overexpression of T cell coinhibitory molecules. We sought to characterize the role of CTLA-4 during sepsis in the setting of chronic alcohol exposure using a murine model of chronic alcohol ingestion followed by cecal ligation and puncture. Results indicated that CTLA-4 expression is increased on CD4+ T cells isolated from alcohol-drinking septic mice as compared with either alcohol-drinking sham controls or water-drinking septic mice. Moreover, checkpoint inhibition of CTLA-4 improved sepsis survival in alcohol-drinking septic mice, but not water-drinking septic mice. Interrogation of the T cell compartments in these animals following pharmacologic CTLA-4 blockade, as well as following conditional Ctla4 deletion in CD4+ T cells, revealed that CTLA-4 deficiency promoted the activation and proliferation of effector regulatory T cells and the generation of conventional effector memory CD4+ T cells. These data highlight an important role for CTLA-4 in mediating mortality during sepsis in the setting of chronic alcohol exposure and may inform future approaches to develop targeted therapies for this patient population.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LNCGM1082 in Gut Epithelial Cells Promotes Expulsion of Infected Epithelial Cells and Release of IL-18. 肠道上皮细胞中的 LNCGM1082 可促进受感染上皮细胞的排出和 IL-18 的释放。
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300110
Ya Wang, Yunhuan Gao, Xiaomin Su, Yang Hao, Yuan Zhang, Rongcun Yang
{"title":"LNCGM1082 in Gut Epithelial Cells Promotes Expulsion of Infected Epithelial Cells and Release of IL-18.","authors":"Ya Wang, Yunhuan Gao, Xiaomin Su, Yang Hao, Yuan Zhang, Rongcun Yang","doi":"10.4049/immunohorizons.2300110","DOIUrl":"10.4049/immunohorizons.2300110","url":null,"abstract":"<p><p>Inflammasome NLRC4 (NLR family CARD domain containing 4) can protect mucosal barriers such as intestine from invading bacterial pathogens. However, it was incompletely clear how NLRC4 was activated in intestinal epithelial cells. In this study, we demonstrated that LNCGM1082 could mediate the activation of NLRC4 via binding NLRC4 with protein kinase C (PKC)δ. LNCGM1082 knockout (KO) mice had reduced resistance against Salmonella Typhimurium infection, as well as impaired expulsion of infected gut epithelial cells and release of IL-18 upon exposure to S. Typhimurium. Similar to NLRC4 KO and PKCδ knockdown gut organoids, there also was impaired expulsion of gut epithelial cells and release of IL-18 in LNCGM1082 KO gut organoids. Furthermore, there also was reduced activation of caspase-1 and caspase-8 in these LNCGM1082 KO, NLRC4 KO, and PKCδ knockdown gut organoids upon exposure to S. Typhimurium. Our results show that LNCGM1082 in the ICEs plays a critical role in mediating activation of NLRC4 through binding NLRC4 and PKCδ and promoting expulsion of infected epithelial cells and release of IL-18 upon exposure to bacteria such as S. Typhimurium.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Effectiveness of Team-based Learning Activities on Learning Outcomes in the Undergraduate Immunology Classroom. 团队学习活动对本科免疫学课堂学习成果的效果评估。
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300073
Joshua J Baty, Heather A Bruns
{"title":"Assessment of the Effectiveness of Team-based Learning Activities on Learning Outcomes in the Undergraduate Immunology Classroom.","authors":"Joshua J Baty, Heather A Bruns","doi":"10.4049/immunohorizons.2300073","DOIUrl":"10.4049/immunohorizons.2300073","url":null,"abstract":"<p><p>Immunology is inherently interdisciplinary. Understanding how the immune system functions requires knowledge from several scientific disciplines, including molecular biology, cellular biology, genetics, and biochemistry. Furthermore, immunology is conceptually complex, requiring the identification of a plethora of immune components and mastery of a large volume of new vocabulary. These attributes can pose challenges to student learning in the undergraduate immunology classroom. Team-based learning (TBL) is a pedagogical method used to increase student engagement in learning, improve student collaboration, and develop communication skills. In a variety of educational settings, TBL activities have been shown to foster a deeper understanding of complex topics, increase student confidence in course content, and improve learning outcomes. In this study, we examined differences in the impact of traditional lecture versus TBL activities on student learning outcomes for four different topics presented in an undergraduate adaptive immunity course composed largely of academically high-performing students. We matched content across two student cohorts, delivered via team-based learning methodology (T cell development and Ab-mediated functions) and traditional lecture (B cell development and T cell effector functions). Student learning was assessed using content questions across a range of Bloom's taxonomy levels, which demonstrated that the TBL activities did not improve examination performance over lecture-based learning in this course. However, students found this learning tool to be valuable, indicating that the TBL activities assisted with preparation for examinations and provided a necessary opportunity to address misconceptions.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibody Response to the Sneathia vaginalis Cytopathogenic Toxin A during Pregnancy. 孕期对阴道鼻疽细胞致病毒素 A 的抗体反应
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2400001
Zion T McCoy, Myrna G Serrano, Laahirie Edupuganti, Katherine M Spaine, David J Edwards, Gregory A Buck, Kimberly K Jefferson
{"title":"Antibody Response to the Sneathia vaginalis Cytopathogenic Toxin A during Pregnancy.","authors":"Zion T McCoy, Myrna G Serrano, Laahirie Edupuganti, Katherine M Spaine, David J Edwards, Gregory A Buck, Kimberly K Jefferson","doi":"10.4049/immunohorizons.2400001","DOIUrl":"10.4049/immunohorizons.2400001","url":null,"abstract":"<p><p>Sneathia vaginalis is a Gram-negative vaginal species that is associated with pregnancy complications. It produces cytopathogenic toxin A (CptA), a pore-forming toxin. To determine whether CptA is expressed in vivo and to examine the mucosal Ab response to the toxin, we examined human midvaginal swab samples obtained during pregnancy for IgM, IgA, and IgG Abs with CptA affinity. This subcohort study included samples from 93 pregnant people. S. vaginalis relative abundance was available through 16S rRNA survey. There were 22 samples from pregnancies that resulted in preterm birth in which S. vaginalis relative abundance was <0.005%, 22 samples from pregnancies that resulted in preterm birth with S. vaginalis ≥0.005%, 24 samples from pregnancies that resulted in term birth with S. vaginalis <0.005%, and 25 samples from pregnancies that resulted in term birth with S. vaginalis ≥0.005%. IgM, IgA, and IgG with affinity for CptA were assessed by ELISA. The capacity for the samples to neutralize CptA was quantified by hemolysis assay. All three Ab isotypes were detectable within different subsets of the samples. There was no significant association between relative abundance of S. vaginalis and the presence of any Ab isotype. The majority of vaginal swab samples containing detectable levels of anti-CptA Abs neutralized the hemolytic activity of CptA, with the strongest correlation between IgA and neutralizing activity. These results demonstrate that S. vaginalis produces CptA in vivo and that CptA is recognized by the host immune defenses, resulting in the production of Abs with toxin-neutralizing ability.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective Role of MAVS Signaling for Murine Lipopolysaccharide-Induced Acute Kidney Injury. MAVS 信号对小鼠脂多糖诱发的急性肾损伤的保护作用
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300069
Trang Anh Thi Tran, Yasunori Iwata, Linh Thuy Hoang, Shinji Kitajima, Shiori Yoneda-Nakagawa, Megumi Oshima, Norihiko Sakai, Tadashi Toyama, Yuta Yamamura, Hiroka Yamazaki, Akinori Hara, Miho Shimizu, Keisuke Sako, Taichiro Minami, Takahiro Yuasa, Keisuke Horikoshi, Daiki Hayashi, Sho Kajikawa, Takashi Wada
{"title":"Protective Role of MAVS Signaling for Murine Lipopolysaccharide-Induced Acute Kidney Injury.","authors":"Trang Anh Thi Tran, Yasunori Iwata, Linh Thuy Hoang, Shinji Kitajima, Shiori Yoneda-Nakagawa, Megumi Oshima, Norihiko Sakai, Tadashi Toyama, Yuta Yamamura, Hiroka Yamazaki, Akinori Hara, Miho Shimizu, Keisuke Sako, Taichiro Minami, Takahiro Yuasa, Keisuke Horikoshi, Daiki Hayashi, Sho Kajikawa, Takashi Wada","doi":"10.4049/immunohorizons.2300069","DOIUrl":"10.4049/immunohorizons.2300069","url":null,"abstract":"<p><p>Despite treatment advances, acute kidney injury (AKI)-related mortality rates are still high in hospitalized adults, often due to sepsis. Sepsis and AKI could synergistically worsen the outcomes of critically ill patients. TLR4 signaling and mitochondrial antiviral signaling protein (MAVS) signaling are innate immune responses essential in kidney diseases, but their involvement in sepsis-associated AKI (SA-AKI) remains unclear. We studied the role of MAVS in kidney injury related to the TLR4 signaling pathway using a murine LPS-induced AKI model in wild-type and MAVS-knockout mice. We confirmed the importance of M1 macrophage in SA-AKI through in vivo assessment of inflammatory responses. The TLR4 signaling pathway was upregulated in activated bone marrow-derived macrophages, in which MAVS helped maintain the LPS-suppressed TLR4 mRNA level. MAVS regulated redox homeostasis via NADPH oxidase Nox2 and mitochondrial reverse electron transport in macrophages to alleviate the TLR4 signaling response to LPS. Hypoxia-inducible factor 1α (HIF-1α) and AP-1 were key regulators of TLR4 transcription and connected MAVS-dependent reactive oxygen species signaling with the TLR4 pathway. Inhibition of succinate dehydrogenase could partly reduce inflammation in LPS-treated bone marrow-derived macrophages without MAVS. These findings highlight the renoprotective role of MAVS in LPS-induced AKI by regulating reactive oxygen species generation-related genes and maintaining redox balance. Controlling redox homeostasis through MAVS signaling may be a promising therapy for SA-AKI.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl-Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation. 巨噬细胞中氧化低密度脂蛋白的积累会影响脂多糖诱导的 AKT2 激活、ATP柠檬酸溶酶、乙酰辅酶 A 生成和炎症基因 H3K27 乙酰化。
ImmunoHorizons Pub Date : 2024-01-01 DOI: 10.4049/immunohorizons.2300101
Kenneth K Y Ting, Pei Yu, Mudia Iyayi, Riley Dow, Sharon J Hyduk, Eric Floro, Hisham Ibrahim, Saraf Karim, Chanele K Polenz, Daniel A Winer, Minna Woo, Jonathan Rocheleau, Jenny Jongstra-Bilen, Myron I Cybulsky
{"title":"Oxidized Low-Density Lipoprotein Accumulation in Macrophages Impairs Lipopolysaccharide-Induced Activation of AKT2, ATP Citrate Lyase, Acetyl-Coenzyme A Production, and Inflammatory Gene H3K27 Acetylation.","authors":"Kenneth K Y Ting, Pei Yu, Mudia Iyayi, Riley Dow, Sharon J Hyduk, Eric Floro, Hisham Ibrahim, Saraf Karim, Chanele K Polenz, Daniel A Winer, Minna Woo, Jonathan Rocheleau, Jenny Jongstra-Bilen, Myron I Cybulsky","doi":"10.4049/immunohorizons.2300101","DOIUrl":"10.4049/immunohorizons.2300101","url":null,"abstract":"<p><p>The accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis. In this study, we show that within hours after LPS stimulation, macrophages with accumulated oxLDL maintain early-phase glycolysis but selectively downregulate activation of AKT2, one of three AKT isoforms. The inhibition of AKT2 activation reduced LPS-induced ATP citrate lyase activation, acetyl-CoA production, and acetylation of histone 3 lysine 27 (H3K27ac) in certain inflammatory gene promoters. In contrast to oxLDL, multiple early LPS-induced signaling pathways were inhibited in macrophages with accumulated cholesterol, including TBK1, AKT1, AKT2, MAPK, and NF-κB, and early-phase glycolysis. The selective inhibition of LPS-induced AKT2 activation was dependent on the generation of mitochondrial oxygen radicals during the accumulation of oxLDL in macrophages prior to LPS stimulation. This is consistent with increased oxidative phosphorylation, fatty acid synthesis, and oxidation pathways found by comparative transcriptomic analyses of oxLDL-loaded versus control macrophages. Our study shows a functional connection between oxLDL accumulation, inactivation of AKT2, and the inhibition of certain inflammatory genes through epigenetic changes that occur soon after LPS stimulation, independent of early-phase glycolysis.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信