Characterization of the Structural Requirements for the NADase Activity of Bacterial Toll/IL-1R domains in a Course-based Undergraduate Research Experience.
Tamara Vallejo-Schmidt, Cheyenne Palm, Trinity Obiorah, Abra Rachida Koudjra, Katrina Schmidt, Alexis H Scudder, Eber Guzman-Cruz, Lenora Paige Ingram, Britney C Erickson, Victoria Akingbehin, Terra Riddick, Sarah Hamilton, Tahreem Riaz, Zachary Alexander, Jasmine T Anderson, Charlotte Bader, Phoebe H Calkins, Sumra S Chaudhry, Haley Collins, Maimunah Conteh, Tope A Dada, Jaira David, Daniel Fallah, Raquel De Leon, Rachel Duff, Itohan R Eromosele, Jaliyl K Jones, Nastaran Keshmiri, Mark A Mercanti, Jaine Onwezi-Nwugwo, Michael A Ojo, Emily R Pascoe, Ariana M Poteat, Sarah E Price, Dalton Riedlbauer, Louis T A Rolle, Payton Shoemaker, Alanna Stefano, Michaela K Sterling, Samina Sultana, Lindsey Toneygay, Alexa N Williams, Sheeram Nallar, John E Weldon, Greg A Snyder, Michelle L D Snyder
{"title":"Characterization of the Structural Requirements for the NADase Activity of Bacterial Toll/IL-1R domains in a Course-based Undergraduate Research Experience.","authors":"Tamara Vallejo-Schmidt, Cheyenne Palm, Trinity Obiorah, Abra Rachida Koudjra, Katrina Schmidt, Alexis H Scudder, Eber Guzman-Cruz, Lenora Paige Ingram, Britney C Erickson, Victoria Akingbehin, Terra Riddick, Sarah Hamilton, Tahreem Riaz, Zachary Alexander, Jasmine T Anderson, Charlotte Bader, Phoebe H Calkins, Sumra S Chaudhry, Haley Collins, Maimunah Conteh, Tope A Dada, Jaira David, Daniel Fallah, Raquel De Leon, Rachel Duff, Itohan R Eromosele, Jaliyl K Jones, Nastaran Keshmiri, Mark A Mercanti, Jaine Onwezi-Nwugwo, Michael A Ojo, Emily R Pascoe, Ariana M Poteat, Sarah E Price, Dalton Riedlbauer, Louis T A Rolle, Payton Shoemaker, Alanna Stefano, Michaela K Sterling, Samina Sultana, Lindsey Toneygay, Alexa N Williams, Sheeram Nallar, John E Weldon, Greg A Snyder, Michelle L D Snyder","doi":"10.4049/immunohorizons.2300062","DOIUrl":null,"url":null,"abstract":"<p><p>TLRs initiate innate immune signaling pathways via Toll/IL-1R (TIR) domains on their cytoplasmic tails. Various bacterial species also express TIR domain-containing proteins that contribute to bacterial evasion of the innate immune system. Bacterial TIR domains, along with the mammalian sterile α and TIR motif-containing protein 1 and TIRs from plants, also have been found to exhibit NADase activity. Initial X-ray crystallographic studies of the bacterial TIR from Acinetobacter baumannii provided insight into bacterial TIR structure but were unsuccessful in cocrystallization with the NAD+ ligand, leading to further questions about the TIR NAD binding site. In this study, we designed a Course-Based Undergraduate Research Experience (CURE) involving 16-20 students per year to identify amino acids crucial for NADase activity of A. baumannii TIR domain protein and the TIR from Escherichia coli (TIR domain-containing protein C). Students used structural data to identify amino acids that they hypothesized would play a role in TIR NADase activity, and created plasmids to express mutated TIRs through site-directed mutagenesis. Mutant TIRs were expressed, purified, and tested for NADase activity. The results from these studies provide evidence for a conformational change upon NAD binding, as was predicted by recent cryogenic electron microscopy and hydrogen-deuterium exchange mass spectrometry studies. Along with corroborating recent characterization of TIR NADases that could contribute to drug development for diseases associated with dysregulated TIR activity, this work also highlights the value of CURE-based projects for inclusion of a diverse group of students in authentic research experiences.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2300062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
TLRs initiate innate immune signaling pathways via Toll/IL-1R (TIR) domains on their cytoplasmic tails. Various bacterial species also express TIR domain-containing proteins that contribute to bacterial evasion of the innate immune system. Bacterial TIR domains, along with the mammalian sterile α and TIR motif-containing protein 1 and TIRs from plants, also have been found to exhibit NADase activity. Initial X-ray crystallographic studies of the bacterial TIR from Acinetobacter baumannii provided insight into bacterial TIR structure but were unsuccessful in cocrystallization with the NAD+ ligand, leading to further questions about the TIR NAD binding site. In this study, we designed a Course-Based Undergraduate Research Experience (CURE) involving 16-20 students per year to identify amino acids crucial for NADase activity of A. baumannii TIR domain protein and the TIR from Escherichia coli (TIR domain-containing protein C). Students used structural data to identify amino acids that they hypothesized would play a role in TIR NADase activity, and created plasmids to express mutated TIRs through site-directed mutagenesis. Mutant TIRs were expressed, purified, and tested for NADase activity. The results from these studies provide evidence for a conformational change upon NAD binding, as was predicted by recent cryogenic electron microscopy and hydrogen-deuterium exchange mass spectrometry studies. Along with corroborating recent characterization of TIR NADases that could contribute to drug development for diseases associated with dysregulated TIR activity, this work also highlights the value of CURE-based projects for inclusion of a diverse group of students in authentic research experiences.
TLRs通过其胞质尾部的Toll/IL-1R(TIR)结构域启动先天性免疫信号通路。各种细菌也表达含有 TIR 结构域的蛋白质,这些蛋白质有助于细菌躲避先天性免疫系统。细菌的 TIR 结构域与哺乳动物的无菌 α 和含 TIR 标记的蛋白 1 以及植物的 TIR 一样,也被发现具有 NAD 酶活性。对鲍曼不动杆菌(Acinetobacter baumannii)中的细菌 TIR 进行的初步 X 射线晶体学研究深入揭示了细菌 TIR 的结构,但与 NAD+ 配体的共晶体学研究并不成功,从而引发了有关 TIR NAD 结合位点的更多问题。在这项研究中,我们设计了一个以课程为基础的本科生研究体验(CURE),每年有 16-20 名学生参与,以确定鲍曼不动杆菌 TIR 结构域蛋白和大肠杆菌 TIR(含 TIR 结构域蛋白 C)中对 NAD 酶活性至关重要的氨基酸。学生们利用结构数据确定了他们假设在 TIR NADase 活性中发挥作用的氨基酸,并通过定点突变创建质粒来表达突变的 TIR。对突变的 TIR 进行了表达、纯化和 NAD 酶活性测试。这些研究结果为 NAD 结合后的构象变化提供了证据,正如最近的低温电子显微镜和氢氘交换质谱研究预测的那样。这项工作不仅证实了 TIR NAD 酶的最新特征,有助于开发治疗与 TIR 活性失调相关疾病的药物,还突出了基于团结与种族平等委员会的项目的价值,让不同的学生参与到真实的研究体验中。