IEEE transactions on biomedical circuits and systems最新文献

筛选
英文 中文
Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review 用于选择性控制外周神经的主动神经接口电路和系统:综述。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-17 DOI: 10.1109/TBCAS.2024.3430038
Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous
{"title":"Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review","authors":"Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous","doi":"10.1109/TBCAS.2024.3430038","DOIUrl":"10.1109/TBCAS.2024.3430038","url":null,"abstract":"Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing \u0000<italic>in-situ</i>\u0000 control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 5","pages":"954-975"},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Power-Efficient Envelope-Detector-Less Amplitude-Shift-Keying Forward Telemetry for Wirelessly Powered Biomedical Devices. 用于无线供电生物医学设备的高能效无包络探测器移幅键控前向遥测技术。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-12 DOI: 10.1109/TBCAS.2024.3427396
Hyun-Su Lee, Hyung-Min Lee
{"title":"A Power-Efficient Envelope-Detector-Less Amplitude-Shift-Keying Forward Telemetry for Wirelessly Powered Biomedical Devices.","authors":"Hyun-Su Lee, Hyung-Min Lee","doi":"10.1109/TBCAS.2024.3427396","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3427396","url":null,"abstract":"<p><p>This paper proposes an envelope-detector-less (EDL) amplitude-shift-keying (ASK) forward telemetry (FT) demodulator for wireless power/data transfer (WPDT) systems. The EDL ASK FT demodulator can substitute bulky and power-hungry components, which are an envelope detector and an analog comparator in the conventional ASK FT demodulator, with a digital controller, reducing both power dissipation and chip area. The proposed demodulator shares the gate control signals of pass transistors, which are used in an ac-dc regulator for wireless power reception, to maintain a constant load voltage while efficiently demodulating the forward telemetry data. Also, a proposed digital cleaner in the EDL demodulator refines this control signal into a wide pulse without suffering from resonant frequency noise, while a synchronizer can align its frequency with the data rate and resonant frequency. The 0.25-μm CMOS prototype chip of the proposed power-path-less EDL ASK FT demodulator, equipped with the ac-dc regulator, demonstrates a significant 38.2% reduction in power dissipation compared to the conventional ASK FT demodulator. Moreover, the EDL ASK FT demodulator occupies only 0.023-mm<sup>2</sup> silicon area and achieves a low bit error rate (BER) less than 10-<sup>4</sup> while maintaining a regulated voltage of 4.5 V on the load.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wearable Dual-Mode Probe for Image-Guided Closed-Loop Ultrasound Neuromodulation. 用于图像引导闭环超声神经调制的可穿戴双模探头
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-11 DOI: 10.1109/TBCAS.2024.3425858
Junjun Huan, Vida Pashaei, Steve J A Majerus, Swarup Bhunia, Soumyajit Mandal
{"title":"A Wearable Dual-Mode Probe for Image-Guided Closed-Loop Ultrasound Neuromodulation.","authors":"Junjun Huan, Vida Pashaei, Steve J A Majerus, Swarup Bhunia, Soumyajit Mandal","doi":"10.1109/TBCAS.2024.3425858","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3425858","url":null,"abstract":"<p><p>Low-intensity focused ultrasound (FUS) is an emerging non-invasive and spatially/temporally precise method for modulating the firing rates and patterns of peripheral nerves. This paper describes an image-guided platform for chronic and patient-specific FUS neuromodulation. The system uses custom wearable probes containing separate ultrasound imaging and modulation transducer arrays realized using piezoelectric transducers assembled on a flexible printed circuit board (PCB). Dual-mode probes operating around 4 MHz (imaging) and 1.3 MHz (modulation) were fabricated and tested on tissue phantoms. The resulting B-mode images were analyzed using a template-matching algorithm to estimate the location of the target nerve and then direct the modulation beam toward the target. The ultrasound transmit voltage used to excite the modulation array was optimized in real-time by automatically regulating functional feedback signals (the average rates of emulated muscle twitches detected by an on-board motion sensor) through a proportional and integral (PI) controller, thus providing robustness to inter-subject variability and probe positioning errors. The proposed closed-loop neuromodulation paradigm was experimentally demonstrated in vitro using an active tissue phantom that integrates models of the posterior tibial nerve and nearby blood vessels together with embedded sensors and actuators.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Power Fully Integrated 256-Channel Nanowire Electrode-on-Chip Neural Interface for Intracellular Electrophysiology. 用于细胞内电生理学的低功耗全集成 256 通道纳米线片上电极神经接口。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-10 DOI: 10.1109/TBCAS.2024.3407794
Jun Wang, Ren Liu, Youngbin Tchoe, Alessio Paolo Buccino, Akshay Paul, Deborah Pre, Agnieszka D'Antonio-Chronowska, Frazer A Kelly, Anne G Bang, Chul Kim, Shadi Dayeh, Gert Cauwenberghs
{"title":"Low-Power Fully Integrated 256-Channel Nanowire Electrode-on-Chip Neural Interface for Intracellular Electrophysiology.","authors":"Jun Wang, Ren Liu, Youngbin Tchoe, Alessio Paolo Buccino, Akshay Paul, Deborah Pre, Agnieszka D'Antonio-Chronowska, Frazer A Kelly, Anne G Bang, Chul Kim, Shadi Dayeh, Gert Cauwenberghs","doi":"10.1109/TBCAS.2024.3407794","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3407794","url":null,"abstract":"<p><p>Intracellular electrophysiology, a vital and versatile technique in cellular neuroscience, is typically conducted using the patch-clamp method. Despite its effectiveness, this method poses challenges due to its complexity and low throughput. The pursuit of multi-channel parallel neural intracellular recording has been a long-standing goal, yet achieving reliable and consistent scaling has been elusive because of several technological barriers. In this work, we introduce a micropower integrated circuit, optimized for scalable, high-throughput in vitro intrinsically intracellular electrophysiology. This system is capable of simultaneous recording and stimulation, implementing all essential functions such as signal amplification, acquisition, and control, with a direct interface to electrodes integrated on the chip. The electrophysiology system-on-chip (eSoC), fabricated in 180nm CMOS, measures 2.236 mm × 2.236 mm. It contains four 8 × 8 arrays of nanowire electrodes, each with a 50 μm pitch, placed over the top-metal layer on the chip surface, totaling 256 channels. Each channel has a power consumption of 0.47 μW, suitable for current stimulation and voltage recording, and covers 80 dB adjustable range at a sampling rate of 25 kHz. Experimental recordings with the eSoC from cultured neurons in vitro validate its functionality in accurately resolving chemically induced multi-unit intracellular electrical activity.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Standard-Cell-Based Neuro-Inspired Integrate-and-Fire Analog-to-Time Converter for Biological and Low-Frequency Signals — Comparison With Analog Version 用于生物和低频信号的基于标准细胞的神经启发式集成与发射模-时转换器--与模拟版本的比较。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-04 DOI: 10.1109/TBCAS.2024.3422282
Miguel Lima Teixeira;João P. Oliveira;José C. Príncipe;João Goes
{"title":"A Standard-Cell-Based Neuro-Inspired Integrate-and-Fire Analog-to-Time Converter for Biological and Low-Frequency Signals — Comparison With Analog Version","authors":"Miguel Lima Teixeira;João P. Oliveira;José C. Príncipe;João Goes","doi":"10.1109/TBCAS.2024.3422282","DOIUrl":"10.1109/TBCAS.2024.3422282","url":null,"abstract":"Continuous-time asynchronous data converters namely, analog-to-digital converters and analog-to-time converters, can be beneficial for certain types of applications, such as, processing of biological signals with sparse information. A particular case of these converters is the integrate-and-fire converter (IFC) that is inspired by the neural system. If it is possible to develop a standard-cell-based (SCB) IFC circuit to perform well in advanced technology nodes, it will benefit from the simplicity of SCB circuit designs and can be implemented in widely available field-programmable gate arrays (FPGAs). This way, this paper proposes two IFC circuits designed and prototyped in a 130 nm CMOS standard process. The first is a novel SCB open-loop dynamic IFC. The latter, is a closed-loop analog IFC with conventional blocks. This paper presents a through comparison between the two IFC circuits. They have a power dissipation of 59 \u0000<inline-formula><tex-math>$boldsymbol{mu}$</tex-math></inline-formula>\u0000W and 53 \u0000<inline-formula><tex-math>$boldsymbol{mu}$</tex-math></inline-formula>\u0000W, and an energy \u0000<italic>per</i>\u0000 pulse of 18 pJ and 1060 pJ, SCB and analog IFC, respectively. The SCB IFC has one of the lowest energy \u0000<italic>per</i>\u0000 pulse consumption reported for IFC circuits. The analog IFC, being fully differential, is to our knowledge the first of its kind. Moreover, they do not require an external clock. They can convert signals with a peak-to-peak amplitude from 1.6 mV to 28 mV and 0.6 mV to 2.4 mV, and a frequency range of 2 Hz to 42 kHz and 10 Hz to 4 kHz, SCB and analog IFC, respectively. Presenting low normalized RMS conversion plus reconstruction errors, below 5.2%. The maximum pulse density (average firing-rate) is 3300 kHz, for the SCB and 50 kHz, for the analog IFC.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"861-871"},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 62.2dB SNDR Event-Driven Level-Crossing ADC with SAR-Assisted Delay Compensation Loop for Time-Sparse Biomedical Signal Acquisition. 用于时间稀疏生物医学信号采集的 62.2dB SNDR 事件驱动电平交叉 ADC,带有 SAR 辅助延迟补偿环路。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-04 DOI: 10.1109/TBCAS.2024.3423366
Mengyu Li, Yi Huo, Shuang Song, Wanyuan Qu, Le Ye, Menglian Zhao, Zhichao Tan
{"title":"A 62.2dB SNDR Event-Driven Level-Crossing ADC with SAR-Assisted Delay Compensation Loop for Time-Sparse Biomedical Signal Acquisition.","authors":"Mengyu Li, Yi Huo, Shuang Song, Wanyuan Qu, Le Ye, Menglian Zhao, Zhichao Tan","doi":"10.1109/TBCAS.2024.3423366","DOIUrl":"https://doi.org/10.1109/TBCAS.2024.3423366","url":null,"abstract":"<p><p>This paper proposed an event-driven clockless level-crossing ADC (LC-ADC) suitable for biomedical applications. Thanks to the LC loop, the sampling rate of the converter automatically adapts to the input activities. Activity-dependent power consumption and data compression can thus be realized, saving system power, especially during time-sparse signal acquisition. Meanwhile, a SAR-assisted loop is exploited to resolve the loop-delay-induced distortion in conventional LC-ADC. Therefore, the resolution and power efficiency of the LC-ADC are improved effectively while maintaining the event-driven feature. Implemented in a 55nm process, the proposed LC-ADC achieves a scalable power consumption and a peak SNDR of 62.2dB for a 20kHz input. It also achieves a Walden FoM of 29.7fJ/conv.-step and a Schreier FoM of 158.6dB, which is best in class, without using off-chip calibration. Sub μW power is realized when the input frequency is below 1.5kHz. The proposed LC-ADC is also verified by simulated electrocardiogram (ECG), neural spike, and electromyogram (EMG) signals. It provides a ~7X data compression for ECG input, providing an attractive solution for time-sparse signal acquisition in biomedical applications.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Power Analog Integrated Architecture of the Voting Classification Algorithm for Diabetes Disease Prediction. 用于糖尿病疾病预测的投票分类算法的低功耗模拟集成架构。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-02 DOI: 10.1109/TBCAS.2024.3421313
Vassilis Alimisis, Charis Aletraris, Nikolaos P Eleftheriou, Emmanouil Anastasios Serlis, Alex James, Paul P Sotiriadis
{"title":"Low-Power Analog Integrated Architecture of the Voting Classification Algorithm for Diabetes Disease Prediction.","authors":"Vassilis Alimisis, Charis Aletraris, Nikolaos P Eleftheriou, Emmanouil Anastasios Serlis, Alex James, Paul P Sotiriadis","doi":"10.1109/TBCAS.2024.3421313","DOIUrl":"10.1109/TBCAS.2024.3421313","url":null,"abstract":"<p><p>A low-power (∼ 600nW), fully analog integrated architecture for a voting classification algorithm is introduced. It can effectively handle multiple-input features, maintaining exceptional levels of accuracy and with very low power consumption. The proposed architecture is based on a versatile Voting algorithm that selectively incorporates one of three key classification models: Bayes or Centroid, or, the Learning Vector Quantization model; all of which are implemented using Gaussian-likelihood and Euclidean distance function circuits, as well as a current comparison circuit. To evaluate the proposed architecture, a comprehensive comparison with popular analog classifiers is performed, using real-life diabetes dataset. All model architectures were trained using Python and compared with the software-based classifiers. The circuit implementations were performed using the TSMC 90 nm CMOS process technology and the Cadence IC Suite was utilized for the design, schematic and post-layout simulations. The proposed classifiers achieved sensitivity of ≥ 96.7% and specificity of ≥ 89.7%.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 10-Channel, 120 nW/Channel, Reconfigurable Capacitance-to-Digital Converter for Sub-$mu$W Robust Wearable Sensing 用于亚微瓦稳健型可穿戴传感技术的 10 通道、120 nW/通道可重构电容数字转换器。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-07-01 DOI: 10.1109/TBCAS.2024.3420871
Omar Faruqe;Daehyun Lee;Natalie B. Ownby;Benton H. Calhoun
{"title":"A 10-Channel, 120 nW/Channel, Reconfigurable Capacitance-to-Digital Converter for Sub-$mu$W Robust Wearable Sensing","authors":"Omar Faruqe;Daehyun Lee;Natalie B. Ownby;Benton H. Calhoun","doi":"10.1109/TBCAS.2024.3420871","DOIUrl":"10.1109/TBCAS.2024.3420871","url":null,"abstract":"This paper presents a 10-channel, 120 nW/channel, reconfigurable capacitance-to-digital converter (CDC) enabling sub-\u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000W wearable sensing applications. The proposed multi-channel architecture supports 10 channels with a shared reconfigurable 6-bit differential analog-to-digital converter (ADC). The reconfigurable nature of the CDC enables adaptive sensing range and sensing speed based on the target application. Furthermore, the architecture performs both on/off-chip parasitic correction and baseline calibration to measure the change in capacitance (\u0000<inline-formula><tex-math>$mathbf{Delta C}$</tex-math></inline-formula>\u0000), excluding baseline and parasitic capacitances. The experimental results show the measurement range of \u0000<inline-formula><tex-math>$mathbf{Delta C}$</tex-math></inline-formula>\u0000 are 5.34 pF for 1x sensitivity and 1.8 pF for 3x sensitivity respectively. The capacitive divider-based architecture excludes power-hungry operational trans-impedance amplifiers for capacitance to voltage conversion, and the architecture supports programmable channel access to activate or deactivate each channel independently. The random interrupt protection logic avoids any broken sample or data error in a sampling window. Additionally, the channel monitoring logic helps keep track of specific channel information. The measured silicon result shows a total power consumption of 1.2 \u0000<inline-formula><tex-math>$mathbf{mu}$</tex-math></inline-formula>\u0000W for 1.6 kHz sampling frequency when driven by a 32 kHz clock, which is 8.6x less than prior works. The CDC is also tested with DMMP (dimethyl-methylphosphonate) gas sensor in gas chromatography (GC). Implemented in 65 nm CMOS process, the 10-channel CDC occupies 0.251 \u0000<inline-formula><tex-math>$mathbf{mm^{2}}$</tex-math></inline-formula>\u0000 of active area (0.0251 \u0000<inline-formula><tex-math>$mathbf{mm^{2}}$</tex-math></inline-formula>\u0000/Ch).","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"849-860"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon-Based Piezoresistive Stress Sensor Arrays for Use in Flexible Tactile Skin 用于柔性触感皮肤的硅基压阻应力传感器阵列。
IEEE transactions on biomedical circuits and systems Pub Date : 2024-06-27 DOI: 10.1109/TBCAS.2024.3420171
Vartika Verma;Alex Nogué I Torrent;Danko Petrić;Valentin Haberhauer;Ralf Brederlow
{"title":"Silicon-Based Piezoresistive Stress Sensor Arrays for Use in Flexible Tactile Skin","authors":"Vartika Verma;Alex Nogué I Torrent;Danko Petrić;Valentin Haberhauer;Ralf Brederlow","doi":"10.1109/TBCAS.2024.3420171","DOIUrl":"10.1109/TBCAS.2024.3420171","url":null,"abstract":"Bioinspired robotics and smart prostheses have many applications in the healthcare sector. Patients can use them for rehabilitation or day-to-day assistance, allowing them to regain some agency over their movements. The most common way to make these smart artificial limbs is by adding a “human-like” electronic skin to detect force and emulate touch detection. This paper presents a fully integrated CMOS-based stress sensor design with a high dynamic range (100 kPa to 100 MPa) supported by an adaptive gain-controlled chopping amplifier. The sensor chip includes four identical sensing structures capable of measuring the chip's local stress gradient and complete readout circuitry supporting data transfer via I2C protocol. The sensor takes 10.2 ms to measure through all four structures and goes into a low-power mode when not in use. The designed chip consumes a total current of \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000300 \u0000<inline-formula><tex-math>$boldsymbol{mu}$</tex-math></inline-formula>\u0000A for one complete operation cycle and \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u000030 \u0000<inline-formula><tex-math>$boldsymbol{mu}$</tex-math></inline-formula>\u0000A during low power mode in simulations. Moreover, the complete design is CMOS-based, making it easier for large-scale commercial fabrication and more affordable for patients in the long run. This paper further proposes the concept of a tactile smart skin by integrating a network of sensor chips with flexible polymers.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"834-848"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10575922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects 利用晶圆级成型和 3D 打印互连技术实现微流控实验室-CMOS 封装
IEEE transactions on biomedical circuits and systems Pub Date : 2024-06-27 DOI: 10.1109/TBCAS.2024.3419804
Jacob Dawes;Tzu-Hsuan Chou;Boyu Shen;Matthew L. Johnston
{"title":"Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects","authors":"Jacob Dawes;Tzu-Hsuan Chou;Boyu Shen;Matthew L. Johnston","doi":"10.1109/TBCAS.2024.3419804","DOIUrl":"10.1109/TBCAS.2024.3419804","url":null,"abstract":"Lab-on-a-chip (LoC) technologies continue to promise lower cost and more accessible platforms for performing biomedical testing in low-cost and disposable form factors. Lab-on-CMOS or lab-on-microchip methods extend this paradigm by merging passive LoC systems with active complementary metal-oxide semiconductor (CMOS) integrated circuits (IC) to enable front-end signal conditioning and digitization immediately next to sensors in fluid channels. However, integrating ICs with microfluidics remains a challenge due to size mismatch and geometric constraints, such as non-planar wirebonds or flip-chip approaches in conflict with planar microfluidics. In this work, we present a hybrid packaging solution for IC-enabled microfluidic sensor systems. Our approach uses a combination of wafer-level molding and direct-write 3D printed interconnects, which are compatible with post-fabrication of planar dielectric and microfluidic layers. In addition, high-resolution direct-write printing can be used to rapidly fabricate electrical interconnects at a scale compatible with IC packaging without the need for fixed tooling. Two demonstration sensor-in-package systems with integrated microfluidics are shown, including measurement of electrical impedance and optical scattering to detect and size particles flowing through microfluidic channels over or adjacent to CMOS sensor and read-out ICs. The approach enables fabrication of impedance measurement electrodes less than 1 mm from the readout IC, directly on package surface. As shown, direct fluid contact with the IC surface is prevented by passivation, but long-term this approach can also enable fluid access to IC-integrated electrodes or other top-level IC features, making it broadly enabling for lab-on-CMOS applications.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"821-833"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信