Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous
{"title":"用于植入式电刺激和记录的主动微通道神经接口。","authors":"Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous","doi":"10.1109/TBCAS.2025.3533612","DOIUrl":null,"url":null,"abstract":"A mm-sized, implantable neural interface for bidirectional control of the peripheral nerves with microchannel electrodes is presented in this paper. The application-specific integrated circuit (ASIC) developed in a 0.18 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m CMOS technology is designed to achieve highly selective, concurrent control of 300-<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m-wide groups of small nerve sections. It has <italic>in-situ</i>, high-voltage-compliant (45 V) electrical stimulation and low-voltage (1.8 V) neural recording in each channel. Biphasic stimulus current pulses up to 124 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>A, with a 2 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>A resolution are generated between 7.4 Hz and 20 kHz frequencies to stimulate and block neural activity. Action potentials are measured across a 10 kHz bandwidth with a variable gain response that ranges up to 72 dB. The neural recording front-end implements a low-power and low-noise biopotential amplifier with an input-referred noise (IRN) of 2.74 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>V<sub>rms</sub> across the full measurement bandwidth. Automatic detection and reduction of stimulus artifacts is realised using a pole-shifting mechanism with a 1-ms amplifier recovery time. Versatile control of concurrently-operating channels is achieved in a two-channel, 2.31 mm<sup>2</sup> interface ASIC using local control that allows up to seven devices to operate in parallel. <italic>In vitro</i> validation of the active interface shows feasibility for closed-loop peripheral nerve control, while <italic>ex vivo</i> analyses of concurrent stimulation and recording demonstrates the measured neural response to electrical stimuli.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 5","pages":"1018-1030"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Active Microchannel Neural Interface for Implantable Electrical Stimulation and Recording\",\"authors\":\"Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous\",\"doi\":\"10.1109/TBCAS.2025.3533612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mm-sized, implantable neural interface for bidirectional control of the peripheral nerves with microchannel electrodes is presented in this paper. The application-specific integrated circuit (ASIC) developed in a 0.18 <inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>m CMOS technology is designed to achieve highly selective, concurrent control of 300-<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>m-wide groups of small nerve sections. It has <italic>in-situ</i>, high-voltage-compliant (45 V) electrical stimulation and low-voltage (1.8 V) neural recording in each channel. Biphasic stimulus current pulses up to 124 <inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>A, with a 2 <inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>A resolution are generated between 7.4 Hz and 20 kHz frequencies to stimulate and block neural activity. Action potentials are measured across a 10 kHz bandwidth with a variable gain response that ranges up to 72 dB. The neural recording front-end implements a low-power and low-noise biopotential amplifier with an input-referred noise (IRN) of 2.74 <inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>V<sub>rms</sub> across the full measurement bandwidth. Automatic detection and reduction of stimulus artifacts is realised using a pole-shifting mechanism with a 1-ms amplifier recovery time. Versatile control of concurrently-operating channels is achieved in a two-channel, 2.31 mm<sup>2</sup> interface ASIC using local control that allows up to seven devices to operate in parallel. <italic>In vitro</i> validation of the active interface shows feasibility for closed-loop peripheral nerve control, while <italic>ex vivo</i> analyses of concurrent stimulation and recording demonstrates the measured neural response to electrical stimuli.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"19 5\",\"pages\":\"1018-1030\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10854878/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854878/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Active Microchannel Neural Interface for Implantable Electrical Stimulation and Recording
A mm-sized, implantable neural interface for bidirectional control of the peripheral nerves with microchannel electrodes is presented in this paper. The application-specific integrated circuit (ASIC) developed in a 0.18 $\mu$m CMOS technology is designed to achieve highly selective, concurrent control of 300-$\mu$m-wide groups of small nerve sections. It has in-situ, high-voltage-compliant (45 V) electrical stimulation and low-voltage (1.8 V) neural recording in each channel. Biphasic stimulus current pulses up to 124 $\mu$A, with a 2 $\mu$A resolution are generated between 7.4 Hz and 20 kHz frequencies to stimulate and block neural activity. Action potentials are measured across a 10 kHz bandwidth with a variable gain response that ranges up to 72 dB. The neural recording front-end implements a low-power and low-noise biopotential amplifier with an input-referred noise (IRN) of 2.74 $\mu$Vrms across the full measurement bandwidth. Automatic detection and reduction of stimulus artifacts is realised using a pole-shifting mechanism with a 1-ms amplifier recovery time. Versatile control of concurrently-operating channels is achieved in a two-channel, 2.31 mm2 interface ASIC using local control that allows up to seven devices to operate in parallel. In vitro validation of the active interface shows feasibility for closed-loop peripheral nerve control, while ex vivo analyses of concurrent stimulation and recording demonstrates the measured neural response to electrical stimuli.