An Active Microchannel Neural Interface for Implantable Electrical Stimulation and Recording

IF 4.9
Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous
{"title":"An Active Microchannel Neural Interface for Implantable Electrical Stimulation and Recording","authors":"Maryam Habibollahi;Dai Jiang;Henry Thomas Lancashire;Andreas Demosthenous","doi":"10.1109/TBCAS.2025.3533612","DOIUrl":null,"url":null,"abstract":"A mm-sized, implantable neural interface for bidirectional control of the peripheral nerves with microchannel electrodes is presented in this paper. The application-specific integrated circuit (ASIC) developed in a 0.18 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m CMOS technology is designed to achieve highly selective, concurrent control of 300-<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>m-wide groups of small nerve sections. It has <italic>in-situ</i>, high-voltage-compliant (45 V) electrical stimulation and low-voltage (1.8 V) neural recording in each channel. Biphasic stimulus current pulses up to 124 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>A, with a 2 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>A resolution are generated between 7.4 Hz and 20 kHz frequencies to stimulate and block neural activity. Action potentials are measured across a 10 kHz bandwidth with a variable gain response that ranges up to 72 dB. The neural recording front-end implements a low-power and low-noise biopotential amplifier with an input-referred noise (IRN) of 2.74 <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>V<sub>rms</sub> across the full measurement bandwidth. Automatic detection and reduction of stimulus artifacts is realised using a pole-shifting mechanism with a 1-ms amplifier recovery time. Versatile control of concurrently-operating channels is achieved in a two-channel, 2.31 mm<sup>2</sup> interface ASIC using local control that allows up to seven devices to operate in parallel. <italic>In vitro</i> validation of the active interface shows feasibility for closed-loop peripheral nerve control, while <italic>ex vivo</i> analyses of concurrent stimulation and recording demonstrates the measured neural response to electrical stimuli.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 5","pages":"1018-1030"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854878/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mm-sized, implantable neural interface for bidirectional control of the peripheral nerves with microchannel electrodes is presented in this paper. The application-specific integrated circuit (ASIC) developed in a 0.18 $\mu$m CMOS technology is designed to achieve highly selective, concurrent control of 300-$\mu$m-wide groups of small nerve sections. It has in-situ, high-voltage-compliant (45 V) electrical stimulation and low-voltage (1.8 V) neural recording in each channel. Biphasic stimulus current pulses up to 124 $\mu$A, with a 2 $\mu$A resolution are generated between 7.4 Hz and 20 kHz frequencies to stimulate and block neural activity. Action potentials are measured across a 10 kHz bandwidth with a variable gain response that ranges up to 72 dB. The neural recording front-end implements a low-power and low-noise biopotential amplifier with an input-referred noise (IRN) of 2.74 $\mu$Vrms across the full measurement bandwidth. Automatic detection and reduction of stimulus artifacts is realised using a pole-shifting mechanism with a 1-ms amplifier recovery time. Versatile control of concurrently-operating channels is achieved in a two-channel, 2.31 mm2 interface ASIC using local control that allows up to seven devices to operate in parallel. In vitro validation of the active interface shows feasibility for closed-loop peripheral nerve control, while ex vivo analyses of concurrent stimulation and recording demonstrates the measured neural response to electrical stimuli.
用于植入式电刺激和记录的主动微通道神经接口。
本文提出了一个毫米大小的可植入神经接口,用于微通道电极对周围神经的双向控制。采用0.18 μm CMOS技术开发的专用集成电路(ASIC)旨在实现300 μm宽的小神经切片组的高选择性并发控制。它在每个通道都有原位、高压(45 V)电刺激和低压(1.8 V)神经记录。在7.4 Hz ~ 20 kHz的频率范围内,产生分辨率为2 μA、高达124 μA的双相刺激电流脉冲,以刺激和阻断神经活动。动作电位在10khz带宽上测量,具有可变增益响应,范围可达72db。神经记录前端实现了一个低功耗、低噪声的生物电位放大器,整个测量带宽的输入参考噪声(IRN)为2.74 μVrms。使用具有1毫秒放大器恢复时间的移极机制实现刺激伪像的自动检测和减少。在双通道2.31 mm2接口ASIC中实现了对并发操作通道的通用控制,使用本地控制,允许多达七个设备并行操作。活性界面的体外验证表明了闭环外周神经控制的可行性,而同步刺激和记录的离体分析表明了测量到的神经对电刺激的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信