{"title":"Effects of segmentation in composite phase change material on melting/solidification performance of triplex-tube thermal energy storage systems","authors":"Md Tabrez Alam, Rajesh Kumar, Anoop K. Gupta","doi":"10.1002/cjce.25378","DOIUrl":"10.1002/cjce.25378","url":null,"abstract":"<p>In this work, a numerical evaluation of the melting/solidification performance of phase change material (PCM) filled inside a triplex-tube latent heat storage unit has been carried out. To enhance the melting/solidification performance, the porous Cu metal foam (MF) was embedded inside PCM (termed as composite PCM). Alternative segments of pure PCM and composite PCM have been allocated in such a way that both the pure PCM and composite PCM occupy the equal annular area (i.e., equal volumes). Influence of increasing number of segments was delineated on the melting/solidification rate, complete melting time, and thermal energy storage/recovery enhancement. The comparisons were drawn with reference to the model having two segments of PCM and composite PCM. The results show that the model containing 64 segments with alternate allocations of PCM and composite PCM has a faster melting/solidification rate than other models. With 32 alternate segments of MF, the full melting/solidification time reduced by 23%/77% with respect to the case with one segment of MF only. The melting/solidification performance gets saturated beyond 32 segments (M-5) and negligible variation (only ~1%) in the thermal performance was noticed upon further segmentation. Finally, the model M-5 proved as the best model considering the aspects of augmented melting/solidification rate and associated complexities. Moreover, the heterogeneity of MF applied in 32-segment model confirmed that the anisotropic MF results in an increased melting rate and leads over other random isotropic distributions of MF.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal design of coolant jacket for cryogen transfer pipelines","authors":"Sajikumar Pillai Sivasree, Baby Nitin","doi":"10.1002/cjce.25368","DOIUrl":"10.1002/cjce.25368","url":null,"abstract":"<p>Cryogenic liquids such as liquid oxygen and liquid hydrogen are extensively used in many processes and manufacturing industries. In these industries, transferring cryogens via pipelines is a routine phenomenon. As the boiling points and latent heat of cryogens are low, excessive vaporization of these cryogens is innate. Therefore, ensuring that the cryogen reaches the utility in its liquid form is challenging. In the case of liquid hydrogen and liquid helium, the pipelines are jacketed with a high boiling cryogen like nitrogen. The idea is to dump most of the heat into cheap nitrogen to limit the loss of precious hydrogen or helium. From a heat inleak point, maximizing the amount of nitrogen in the jacket is advantageous by choosing large cross-sectional areas. Also, larger flow cross sections would lower pressure drops and, therefore, lower pumping costs. However, such a choice would add to the mass of the pipeline. An increase in the mass of the pipeline increases the need for better structural support of the pipeline assembly. Therefore, the design of cryogen jackets for limiting heat inleak is a multi-objective optimization problem. In this work, we model the heat leak into the hydrogen via the nitrogen jacket and the pressure drop of liquid nitrogen, and we find the mass of the pipeline assembly. Then, we optimize the design of nitrogen jackets fitted over hydrogen pipelines. We employ the evolutionary optimization technique, genetic algorithm (GA), to perform this optimization.cryogen; genetic algorithm; heat inleak; liquid hydrogen; optimization.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141514188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Pietraccini, Audrey Santandrea, Pierre-Alexandre Glaude, Anthony Dufour, Olivier Dufaud
{"title":"Decoupling pyrolysis and combustion of organic powders to determine the laminar flame speed","authors":"Matteo Pietraccini, Audrey Santandrea, Pierre-Alexandre Glaude, Anthony Dufour, Olivier Dufaud","doi":"10.1002/cjce.25362","DOIUrl":"10.1002/cjce.25362","url":null,"abstract":"<p>Determining the laminar flame speed of dusts is far from straightforward. A strong dependency on the experimental setup and the data treatment's high complexity makes it a true challenge. This work compares three complementary experimental setups to measure the laminar flame speed of organic dust (here, cellulose): a modified Hartmann tube, a 20 L sphere, and a micro-fluidized bed (MFB) burner. The first two consider the flame propagation phenomenon in its globality, which means that numerous steps are involved simultaneously (particle heating, pyrolysis, oxidation, radiative transfer, flame stretching), while the third one decouples pyrolysis and combustion, to focus mainly on the oxidation rate. An MFB was conceived to generate pyrolysis products and burn them in a laminar flame. Unstretched flame velocities determined with the first two setups were consistent and equal to 22.0 and 26.6 cm ∙ s<sup>−1</sup>, respectively. Using Silvestrini's equation, values ranging between 14.0 and 33.4 cm ∙ s<sup>−1</sup> were obtained according to the dust concentration. With the MFB burner, the flame speed was much higher (135–155 cm ∙ s<sup>−1</sup>), due to the higher temperature of the fresh mixture and the fact that only the oxidation of the pyrolysis gases is considered. A numerical simulation (Chemkin) confirmed these results since the range 135 to 231 cm ∙ s<sup>−1</sup> was obtained for equivalence ratios of 0.6 and 1.2, respectively. The discrepancy between the laminar flame speed determined in the sphere or in the tube and that obtained in the MFB highlights the significant influence of particle heating and pyrolysis during a dust explosion.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141361362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Highlights","authors":"","doi":"10.1002/cjce.24993","DOIUrl":"https://doi.org/10.1002/cjce.24993","url":null,"abstract":"","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed convective viscous dissipative flow of Casson hybrid nanofluid with variable thermal conductivity at the stagnation zone of a rotating sphere","authors":"Tanvi Singla, Bhuvaneshvar Kumar, Sapna Sharma","doi":"10.1002/cjce.25352","DOIUrl":"10.1002/cjce.25352","url":null,"abstract":"<p>Mixed convection flows across the revolving bodies have eminent applications in science and technology, such as fibre coating, polymer deposition, centrifugal blood pumps, rotatory machinery, and so forth. In the current work, magnetohydrodynamic (MHD) flow and heat transfer characteristics of Casson hybrid nanofluid (Ag/MgO as nanoparticles) over the rotating sphere at the stagnation zone are being studied. Moreover, an analysis of heat transmission is conducted by considering the influence of thermal radiation, temperature-dependent thermal conductivity, magnetic field, and viscous dissipation. The relevant partial differential equations are reformed into ordinary differential equations by appropriate transformations, which are solved using the successive linearization method (SLM). The thermal field, velocity components in <i>x</i> and <i>z</i> directions, heat transfer rate, and skin friction coefficient are computed for various physical quantities like rotation parameter mixed convection parameter, radiation parameter, Eckert number, Casson parameter, magnetic parameter, variable thermal conductivity parameter, and so forth. The current findings align well with the literature in a limiting sense. Thermal enhancement in hybrid nanofluid is observed for the viscous dissipation parameter (Ec), thermal conductivity parameter (<span></span><math>\u0000 <mi>ε</mi></math>), and radiation parameter (Rd). The degree of heat transfer rises from 12.8% to 20% when the Casson parameter's value (<span></span><math>\u0000 <msub>\u0000 <mi>β</mi>\u0000 <mn>0</mn>\u0000 </msub></math>) increases. Also, a decrease of approximately 33% is depicted between the peak values of the velocity magnitude with an increase in rotation parameter.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141383151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alireza Dehghanisanij, Nima Khakzad, Ernesto Salzano, Paul Amyotte
{"title":"Protecting oil storage tanks against floods: Natech risk assessment with imprecise probabilities","authors":"Alireza Dehghanisanij, Nima Khakzad, Ernesto Salzano, Paul Amyotte","doi":"10.1002/cjce.25349","DOIUrl":"10.1002/cjce.25349","url":null,"abstract":"<p>Natechs are technological accidents that are triggered by natural disasters. The increase in the frequency and severity of climatic natural disasters along with the growth of industrialization has accelerated the demand for development of dedicated methodologies for risk assessment and management of Natechs. Due to a lack of accurate and sufficient data, risk assessment of Natechs has largely been based on subjective assumptions and imprecise probabilities, making the assessed risks and the subsequent risk management strategies deficient in terms of cost-effectiveness. In the present study, evidence theory, as an effective technique for dealing with imprecise probabilities, and Bayesian network, as an effective tool for reasoning under uncertainty, are combined to develop a methodology for risk analysis of Natechs based on imprecise probabilities with no attempt to increase the precision of the input data but the accuracy and cost-effectiveness of the outcomes. Flotation of oil tanks during floods has been considered to exemplify the methodology. The methodology is demonstrated to outperform conventional approaches where average probabilities or generic probability distributions are used instead of interval probabilities for risk assessment and management.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141193832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 winner of the Lectureship Award","authors":"","doi":"10.1002/cjce.25347","DOIUrl":"10.1002/cjce.25347","url":null,"abstract":"","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiawei Zhou, Ping Wu, Hejun Ye, Yunpeng Song, Xianbao Wu, Yuchen He, Haipeng Pan
{"title":"Fault diagnosis for blast furnace ironmaking process based on randomized local fisher discriminant analysis","authors":"Jiawei Zhou, Ping Wu, Hejun Ye, Yunpeng Song, Xianbao Wu, Yuchen He, Haipeng Pan","doi":"10.1002/cjce.25312","DOIUrl":"10.1002/cjce.25312","url":null,"abstract":"<p>Fault diagnosis plays a vital role in ensuring the operation safety of blast furnaces and improving the quality of molten iron in the ironmaking and steelmaking industry. The blast furnace ironmaking process (BFIP) is intrinsically nonlinear. To address the nonlinearity issue of BFIP, a novel fault diagnosis approach that combines the randomized method, local structure information, and Fisher discriminant analysis is proposed in this paper. Using a randomized feature map, the process data is first mapped onto a randomized explicit low-dimensional feature space. Compared to kernel methods, explicit low-dimensional random Fourier features considerably reduce the computational cost, particularly for real-time fault diagnosis for a large training dataset or a large-scale process. Additionally, the local structure information contained in the randomized low-dimensional feature space is extracted. The fault diagnosis performance is improved through the exploration of the local structure of random Fourier features. Finally, the blast furnace iron-marking process state is determined using Bayesian inference. Case studies on a real-world BFIP are carried out to demonstrate the superior performance of the proposed method in comparison with other related methods.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141117043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The uniqueness of flexible and mouldable thermal insulation materials in thermal protection systems—A comprehensive review","authors":"Kamna Chaturvedi, Manish Dhangar, Ayushi Jaiswal, Avanish Kumar Srivastava, Sarika Verma","doi":"10.1002/cjce.25278","DOIUrl":"10.1002/cjce.25278","url":null,"abstract":"<p>In thermal control and safety systems, thermal insulation materials which are lightweight and flexible with hierarchical microstructures are commonly used nowadays. Flexible thermal insulation materials are designed to prevent heat transfer between two surfaces. These materials have various applications, from building insulation to automotive components, aerospace, and industrial processes. This review aims to provide an overview of flexible thermal insulation materials, their properties, and their applications. The most commonly used materials used for flexible thermal insulation are aerogels, ceramic fibres, and polymers. These materials are lightweight, durable, and have excellent thermal insulation properties and are also gaining popularity due to their unique characteristics. The insulation performance of flexible thermal insulation materials is influenced by thickness, density, porosity, and thermal conductivity factors. The choice of insulation material and its properties depend on the application site and the desired thermal insulation. The literature shows that nanofibrils-based insulating materials have low thermal conductivity values and can be excellent flexible thermal insulating materials. Using flexible thermal insulation materials is crucial in reducing energy consumption and dissipation, enhancing thermal efficiency, and improving sustainability in various industries.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140971580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of low cost cathode electrocatalyst Pt-Ni/CAB using DMSO as a solvent for low temperature proton exchange membrane fuel cell application","authors":"Abhay Pratap Singh, Hiralal Pramanik","doi":"10.1002/cjce.25306","DOIUrl":"10.1002/cjce.25306","url":null,"abstract":"<p>In the present study, low cost platinum based bimetallic electrocatalyst Pt-Ni/C<sub>AB</sub> with varying Pt to Ni atomic ratios 3:1, 1:1, and 1:3 were successfully synthesized for oxygen reduction reaction (ORR) of the developed proton exchange membrane fuel cell (PEMFC). The solvothermal process was adopted for the synthesis of Pt-Ni(3:1)/C<sub>AB</sub>, Pt-Ni(1:1)/C<sub>AB</sub>, and Pt-Ni(1:3)/C<sub>AB</sub> using dimethyl sulfoxide (DMSO) as solvent at a temperature of 190°C which is very close to the boiling point. The Pt-Ni/C<sub>AB</sub> exhibited the highest activity for the ORR in half-cell and single cell PEMFC performance. The electrocatalysts Pt-Ni(1:3)/C<sub>AB</sub> appeared with smallest crystalline FCC structures having crystallite size of 8.33 nm. The transmission electron microscopy (TEM) analysis also show that the Pt-Ni(1:3)/C<sub>AB</sub> has smallest particle size of 1.67 ± 0.45 nm. The cyclic voltammetry (CV) analysis shows Pt-Ni(1:3)/C<sub>AB</sub> electrocatalyst offers less activation loss at ORR peak at a potential of 0.16 V as compared to Pt-Ni(3:1)/C<sub>AB</sub> (ORR peak – 0.12) and Pt-Ni(1:1)/C<sub>AB</sub> (ORR peak – 0.11). The synthesized Pt-Ni(1:3)/C<sub>AB</sub> produced a maximum power density of 18.86 mW/cm<sup>2</sup> at a maximum current density of 44.8 mA/cm<sup>2</sup> with an open-circuit voltage of 0.914 V at a room temperature of 33°C. The power density improved around 1.34 times when the cell temperature was raised from 33 to 70°C. The Pt-Ni(1:3)/C<sub>AB</sub> cathode electrocatalyst could be used as economical to substitute costly commercial pure platinum based electrocatalyst.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140971203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}