{"title":"Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects.","authors":"Zhitao Cai, Boyuan Liu, Qing Cai, Jingxin Gou, Xing Tang","doi":"10.1080/17425247.2024.2439462","DOIUrl":"10.1080/17425247.2024.2439462","url":null,"abstract":"<p><strong>Introduction: </strong>Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC.</p><p><strong>Areas covered: </strong>We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC.</p><p><strong>Expert opinion: </strong>Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"31-46"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calcium phosphate coated nanoparticles for drug delivery: where are we now?","authors":"Vuk Uskoković","doi":"10.1080/17425247.2024.2440100","DOIUrl":"10.1080/17425247.2024.2440100","url":null,"abstract":"<p><strong>Introduction: </strong>For three decades since the term 'biomaterial' was defined in the late 1960s, the interest of the biomaterials research community in calcium phosphates (CaPs) constantly increased. After this interest reached its peak in the mid-1990s, however, it has begun its steady decline, which lasts to this day, the reasons being manifold, many of which are explicated in this review piece. As of this turning point onwards, one solution for CaP to regain its relevance has involved its use in composite structures where properties of complementary components are intended to mitigate each other's weaknesses. A major type of such hybrid particulate structures has included CaP as a surface coating, the goal being to augment bioactivity, promote an intimate interaction with living tissues, facilitate cellular uptake and/or impart smart, pH-sensitive properties to the particles, among other intended effects.</p><p><strong>Areas covered: </strong>In this review article, historical remarks, recent examples, challenges and opportunities pertaining to CaP-coated nanoparticles for drug delivery are elaborated. Discussion is supplemented with a bibliographic analysis and framed within a chronological timeline.</p><p><strong>Expert opinion: </strong>Phenomenal properties and functions are bound to be elicited by composite structures containing CaP coatings and it is imperative that the exploration of these hybrids continues in decades that follow.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"47-54"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grace L Williamson, Denzel D Middleton, Kristy M Ainslie, Eric M Bachelder
{"title":"Acetalated dextran: a novel delivery platform for particle-based vaccines.","authors":"Grace L Williamson, Denzel D Middleton, Kristy M Ainslie, Eric M Bachelder","doi":"10.1080/17425247.2024.2442671","DOIUrl":"10.1080/17425247.2024.2442671","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chi-Fen Chuang, Thi-Nhan Phan, Ching-Hsiang Fan, Thanh-Thuy Vo Le, Chih-Kuang Yeh
{"title":"Advancements in ultrasound-mediated drug delivery for central nervous system disorders.","authors":"Chi-Fen Chuang, Thi-Nhan Phan, Ching-Hsiang Fan, Thanh-Thuy Vo Le, Chih-Kuang Yeh","doi":"10.1080/17425247.2024.2438188","DOIUrl":"10.1080/17425247.2024.2438188","url":null,"abstract":"<p><strong>Introduction: </strong>Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS.</p><p><strong>Areas covered: </strong>This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed.</p><p><strong>Expert opinion: </strong>FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"15-30"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra Aulia Mardikasari, Gábor Katona, Ildikó Csóka
{"title":"Bovine serum albumin nanoparticles: a promising platform for nasal drug delivery.","authors":"Sandra Aulia Mardikasari, Gábor Katona, Ildikó Csóka","doi":"10.1080/17425247.2024.2436117","DOIUrl":"10.1080/17425247.2024.2436117","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"7-10"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142782227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes.","authors":"Hirak Mazumdar, Kamil Reza Khondakar, Suparna Das, Animesh Halder, Ajeet Kaushik","doi":"10.1080/17425247.2024.2440618","DOIUrl":"10.1080/17425247.2024.2440618","url":null,"abstract":"<p><strong>Introduction: </strong>Artificial intelligence (AI) is changing the field of nanomedicine by exploring novel nanomaterials for developing therapies of high efficacy. AI works on larger datasets, finding sought-after nano-properties for different therapeutic aims and eventually enhancing nanomaterials' safety and effectiveness. AI leverages patient clinical and genetic data to predict outcomes, guide treatments, and optimize drug dosages and forms, enhancing benefits while minimizing side effects. AI-supported nanomedicine faces challenges like data fusion, ethics, and regulation, requiring better tools and interdisciplinary collaboration. This review highlights the importance of AI regarding patient care and urges scientists, medical professionals, and regulators to adopt AI for better outcomes.</p><p><strong>Areas covered: </strong>Personalized Nanomedicine, Material Discovery, AI-Driven Therapeutics, Data Integration, Drug Delivery, Patient Centric Care.</p><p><strong>Expert opinion: </strong>Today, AI can improve personalized health wellness through the discovery of new types of drug nanocarriers, nanomedicine of specific properties to tackle targeted medical needs, and an increment in efficacy along with safety. Nevertheless, problems such as ethical issues, data security, or unbalanced data sets need to be addressed. Potential future developments involve using AI and quantum computing together and exploring telemedicine i.e. the Internet-of-Medical-Things (IoMT) approach can enhance the quality of patient care in a personalized manner by timely decision-making.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"85-108"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Are stimuli-responsive hybrid copolymer nanoparticles the next innovation in tumor drug delivery?","authors":"Martin Hrubý","doi":"10.1080/17425247.2024.2436081","DOIUrl":"10.1080/17425247.2024.2436081","url":null,"abstract":"","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"11-14"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noémie Alphonse, Thomas Sécher, Nathalie Heuzé-Vourc'h
{"title":"A breath of fresh air: inhaled antibodies to combat respiratory infectious diseases - a clinical trial overview.","authors":"Noémie Alphonse, Thomas Sécher, Nathalie Heuzé-Vourc'h","doi":"10.1080/17425247.2024.2446608","DOIUrl":"10.1080/17425247.2024.2446608","url":null,"abstract":"<p><strong>Introduction: </strong>With the worldwide growing burden of respiratory tract infections (RTIs), innovative therapeutic approaches are in high demand. Inhaled antibodies (Abs) represent a promising avenue, offering targeted treatment options with potentially better therapeutic index compared to traditional delivery methods.</p><p><strong>Areas covered: </strong>This comprehensive review summarizes the challenges faced in delivering Abs by (intranasal and pulmonary) inhalation. It outlines the physiological and biological barriers encountered by inhaled drugs, as well as the influence of delivery devices and formulation on the deposition and efficacy of inhaled molecules. Moreover, it provides a detailed overview of the current clinical trial landscape of inhaled anti-RTI Abs, highlighting the progress in the development of inhaled Abs targeting a range of pathogens, such as severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus. The mechanism of action, therapeutic targets, and clinical outcomes of these novel therapies are detailed.</p><p><strong>Expert opinion: </strong>Delivery of Abs by inhalation faces several challenges. Addressing these challenges and developing specific approaches to deliver inhaled Abs represent a promising avenue for the development of the next generation of inhaled Abs. By offering targeted, localized therapy with the potential for a better therapeutic index, inhaled Abs could significantly improve outcomes for patients with RTIs.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving adherence by investigating the stability of dabigatran outside of the manufacturer's original packaging: a New Zealand perspective.","authors":"Zainab Noori, Dale Griffiths, Stella Jung, Catherine Huang, Hiyori Nakano, Melody Wong, Jagdish K Jaiswal, Manisha Sharma","doi":"10.1080/17425247.2024.2444359","DOIUrl":"10.1080/17425247.2024.2444359","url":null,"abstract":"<p><strong>Background: </strong>Dose administration aids (DAA) are widely used to improve adherence. In New Zealand (NZ) more pharmacies are utilizing automated filling robots to meet DAA demand. Pradaxa™ capsules containing dabigatran etexilate (DE) is problematic. It is moisture-sensitive, and Medsafe (NZ regulator), recommends keeping the capsule in its original packaging until administration. This prevents DE from repacking into DAA, reducing the effectiveness of the DAA. Overseas studies demonstrated stability of DE in DAA. However, the findings cannot be extrapolated to NZ environments.</p><p><strong>Research design and methods: </strong>Pradaxa™ 110 mg capsules repackaged in DAA were stored in conditions mimicking real-life settings (room temperature, bedroom and fridge) for 16 weeks. At predetermined timepoints, the capsules were evaluated for drug content and dissolution profile.</p><p><strong>Results: </strong>DE samples stored in NZ conditions for 16 weeks met the drug content requirement of 85-115% except for unit-dose sachet samples stored in fridge condition (79.7% ± 6.82). Samples demonstrated similarity in dissolution profile until 8 weeks with release rate decreased at 16 weeks under all storage conditions.</p><p><strong>Conclusion: </strong>DE capsules repackaged in DAA demonstrated stability for up to 8 weeks in all NZ storage conditions, confirming the safety of repackaging DE into a DAA.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahfoozur Rahman, Janhvi Singh, Alhussain Aodah, Majed Alrobaian, Nabil K Alruwaili, Waleed H Almalki, Salem Salman Almujri, Safia Obaidur Rab, Osama A Madkhali, Ankit Sahoo, Jonathan A Lal
{"title":"Chiral nanosystem and chiral supraparticles for drug delivery: an expert opinion.","authors":"Mahfoozur Rahman, Janhvi Singh, Alhussain Aodah, Majed Alrobaian, Nabil K Alruwaili, Waleed H Almalki, Salem Salman Almujri, Safia Obaidur Rab, Osama A Madkhali, Ankit Sahoo, Jonathan A Lal","doi":"10.1080/17425247.2024.2444347","DOIUrl":"10.1080/17425247.2024.2444347","url":null,"abstract":"<p><strong>Introduction: </strong>Chiral nanocarriers enhance therapeutic efficacy by improving in vivo stability and cellular uptake. Chemical functionalization reduces cytotoxicity, resulting in favorable biocompatibility. Nanoparticles self-assemble into supraparticles, enhancing drug delivery through improved retention and drug loading.</p><p><strong>Area covered: </strong>This review covers chiral nanostructures and chiral supraparticles, and their applications in drug delivery and various healthcare applications.</p><p><strong>Expert opinion: </strong>The chirality of biomaterials is crucial for advancing nanomedicine. Chiral nanosystem enhance drug delivery by interacting selectively with biological molecules, improving their specificity and efficacy. This reduces off-target effects and improves therapeutic outcomes. Research has focused on cellular uptake and elimination to ensure safety, and chiral nanomaterials also show promise in optical sensing and gene editing. Their biocompatibility and ability to self-assemble into supraparticles may make them ideal for drug delivery systems.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-20"},"PeriodicalIF":0.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}