{"title":"定量噬菌体-抗生素抗铜绿假单胞菌协同作用的半机械药代动力学/药效学模型。","authors":"Omar Assafiri, Qixuan Hong, Sandra Morales, Yu-Wei Lin, Hak-Kim Chan","doi":"10.1080/17425247.2025.2520963","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>ultidrug-resistant (MDR) Pseudomonas aeruginosa is among the top three pathogens urgently needing new treatments. Phage therapy offers an alternative to antibiotics by auto-dosing and by targeting bacteria that are resistant to conventional antibiotics, and combining phages with antibiotics may overcome shortcomings of monotherapy.</p><p><strong>Research design and methods: </strong>We developed a novel semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model based on static in vitro time-kill data evaluating ciprofloxacin (CIPRO; 0-128 µg/mL) and bacteriophage PEV31 (0.01-100 MOI) individually and in combination against MDR P. aeruginosa strain FADDI-PA001. Additionally, a Shiny-based interactive application was designed to simulate and visualize the impact of varying concentrations of phage and antibiotic treatments, facilitating real-time regimen optimization.</p><p><strong>Results: </strong>Monotherapy with either CIPRO or PEV31 inhibited bacterial growth for less than 8 h before regrowth occurred; complete eradication was achieved only at high CIPRO concentrations (64 and 128 µg/mL). In combination (with CIPRO doses above 2 µg/mL), PEV31 and CIPRO acted synergistically, reducing bacterial levels below 10<sup>2</sup> CFU/mL at 24 h. The final PK/PD model which included a phage-bacteria-interaction term and implemented CIPRO's effect as a power-model successfully captured the observed time-kill-data for both monotherapy and combination therapy.</p><p><strong>Conclusions: </strong>These promising findings support further in vivo validation and mechanistic studies to advance combination therapy for MDR pathogens. Our integrated approach paves way for clinical translation.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-mechanistic Pharmacokinetic/Pharmacodynamic model for quantifying phage-antibiotic synergy against <i>Pseudomonas aeruginosa</i>.\",\"authors\":\"Omar Assafiri, Qixuan Hong, Sandra Morales, Yu-Wei Lin, Hak-Kim Chan\",\"doi\":\"10.1080/17425247.2025.2520963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>ultidrug-resistant (MDR) Pseudomonas aeruginosa is among the top three pathogens urgently needing new treatments. Phage therapy offers an alternative to antibiotics by auto-dosing and by targeting bacteria that are resistant to conventional antibiotics, and combining phages with antibiotics may overcome shortcomings of monotherapy.</p><p><strong>Research design and methods: </strong>We developed a novel semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model based on static in vitro time-kill data evaluating ciprofloxacin (CIPRO; 0-128 µg/mL) and bacteriophage PEV31 (0.01-100 MOI) individually and in combination against MDR P. aeruginosa strain FADDI-PA001. Additionally, a Shiny-based interactive application was designed to simulate and visualize the impact of varying concentrations of phage and antibiotic treatments, facilitating real-time regimen optimization.</p><p><strong>Results: </strong>Monotherapy with either CIPRO or PEV31 inhibited bacterial growth for less than 8 h before regrowth occurred; complete eradication was achieved only at high CIPRO concentrations (64 and 128 µg/mL). In combination (with CIPRO doses above 2 µg/mL), PEV31 and CIPRO acted synergistically, reducing bacterial levels below 10<sup>2</sup> CFU/mL at 24 h. The final PK/PD model which included a phage-bacteria-interaction term and implemented CIPRO's effect as a power-model successfully captured the observed time-kill-data for both monotherapy and combination therapy.</p><p><strong>Conclusions: </strong>These promising findings support further in vivo validation and mechanistic studies to advance combination therapy for MDR pathogens. Our integrated approach paves way for clinical translation.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2520963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2520963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A semi-mechanistic Pharmacokinetic/Pharmacodynamic model for quantifying phage-antibiotic synergy against Pseudomonas aeruginosa.
Background: ultidrug-resistant (MDR) Pseudomonas aeruginosa is among the top three pathogens urgently needing new treatments. Phage therapy offers an alternative to antibiotics by auto-dosing and by targeting bacteria that are resistant to conventional antibiotics, and combining phages with antibiotics may overcome shortcomings of monotherapy.
Research design and methods: We developed a novel semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model based on static in vitro time-kill data evaluating ciprofloxacin (CIPRO; 0-128 µg/mL) and bacteriophage PEV31 (0.01-100 MOI) individually and in combination against MDR P. aeruginosa strain FADDI-PA001. Additionally, a Shiny-based interactive application was designed to simulate and visualize the impact of varying concentrations of phage and antibiotic treatments, facilitating real-time regimen optimization.
Results: Monotherapy with either CIPRO or PEV31 inhibited bacterial growth for less than 8 h before regrowth occurred; complete eradication was achieved only at high CIPRO concentrations (64 and 128 µg/mL). In combination (with CIPRO doses above 2 µg/mL), PEV31 and CIPRO acted synergistically, reducing bacterial levels below 102 CFU/mL at 24 h. The final PK/PD model which included a phage-bacteria-interaction term and implemented CIPRO's effect as a power-model successfully captured the observed time-kill-data for both monotherapy and combination therapy.
Conclusions: These promising findings support further in vivo validation and mechanistic studies to advance combination therapy for MDR pathogens. Our integrated approach paves way for clinical translation.