Shengxiong Huang , Wenyao Duan , Ziheng Jin , Shouliang Yi , Quanwei Lv , Xia Jiang
{"title":"Progress in carbon capture and impurities removal for high purity hydrogen production from biomass thermochemical conversion","authors":"Shengxiong Huang , Wenyao Duan , Ziheng Jin , Shouliang Yi , Quanwei Lv , Xia Jiang","doi":"10.1016/j.ccst.2024.100345","DOIUrl":"10.1016/j.ccst.2024.100345","url":null,"abstract":"<div><div>Renewable hydrogen production from biomass thermochemical conversion is an emerging technology to reduce fossil fuel consumptions and carbon emissions. Biomass-derived hydrogen can be produced by pyrolysis, gasification, alkaline thermal treatment, etc. However, the removal of impurities from biomass thermochemical conversion products to improve hydrogen purity is currently technical bottleneck. It is important to assess and investigate the types and properties of impurities, the difficulty of separation, and the impact on downstream utilization of hydrogen in the biomass-derived hydrogen production process. The key objectives of this comprehensive review are: (1) to reveal the current status and necessity of developing biomass-derived hydrogen production; (2) to evaluate the types, devices and impurities distribution of biomass thermochemical conversion; (3) to explore the formation pathways and removal technologies of typical impurities of tar, CO<sub>2</sub>, sulfides, and nitrides in hydrogen production process; and (4) to propose future insights on the separation technologies of typical impurities to promote the gradual substitution of biomass-derived hydrogen for fossil-derived energy.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100345"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhang Liu , Yihe Miao , Lun Wang , Xilin Gu , Zhaoyang Li , Shigenori Fujikawa , Lijun Yu
{"title":"Addressing solar power curtailment by integrating flexible direct air capture","authors":"Yuhang Liu , Yihe Miao , Lun Wang , Xilin Gu , Zhaoyang Li , Shigenori Fujikawa , Lijun Yu","doi":"10.1016/j.ccst.2024.100304","DOIUrl":"10.1016/j.ccst.2024.100304","url":null,"abstract":"<div><div>Direct air capture (DAC) is one of the principal negative emission technologies for addressing climate change, but its deployment is hindered by the high cost and substantial energy consumption. Only being powered by low-cost renewable energy, DAC can maximize its negative emission potential, in return, DAC can help the decarbonization of the power sector. Due to the intermittency of renewable energy, effectively integrating renewable energy with DAC currently remains a significant challenge. To address this research gap, this study focuses on exploring flexible operation strategies of the adsorbent based DAC system, coupling them with an actual photovoltaic (PV) power station, and making DAC systems participate in minute-level dispatch. The adsorbent based DAC system adopts a modular design, allowing each unit to operate as an independent load, not requiring continuous operation and enabling interruption between cycles or processes. Additionally, the adsorption process is curtailable and extendable to dynamically adjust the time of activating desorption. The flexible operational combination allows the DAC to better match the fluctuation of PV. Based on actual data and time-of-use pricing, this paper conducts a comparative techno-economic analysis of DAC and battery energy storage (BES) systems. The results indicate that deploying flexible DAC is the most cost-effective among different given scenarios. Deploying 46,800 DAC units primarily powered by solar curtailment can achieve the lowest cost of $30,000/MW-year for the selected 1000 MW PV power station, along with an 80 % curtailment consumption rate and annual 634,000 tons CO<sub>2</sub> captured. Before 2030, coupling DAC with PV can effectively address the curtailment issues and assist with peak shaving. As carbon prices gradually rise and adsorbent costs decrease, by 2040, DAC will release its negative emission potential, playing a crucial role in achieving net zero or even negative carbon emissions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100304"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbonated waste paste calcined clay cement with enhanced CO2 mineralization and early strength","authors":"Qing Liu, Yu Yan, Yuchen Hu, Qiang You, Guoqing Geng","doi":"10.1016/j.ccst.2024.100343","DOIUrl":"10.1016/j.ccst.2024.100343","url":null,"abstract":"<div><div>Modern concrete offers a significant potential for carbon capture, utilization and storage due to their alkaline nature. Herein, we combine the CO<sub>2</sub> mineralization in the waste cement paste (WCP) with calcined clay cement to develop a novel low-carbon cement—carbonated waste paste calcined clay cement (CWPC<sup>3</sup>). Our results suggest that 1 kg WCP efficiently mineralizes ∼0.27 kg CO<sub>2</sub> within 2 h, and together produces amorphous silica-alumina gel. This carbonated WCP promotes early hydration and strength development due to its high pozzolanic reactivity. Compared with conventional limestone calcined clay cement (LC<sup>3</sup>), CWPC<sup>3</sup> has higher early strength and lower embodied carbon. Our work provides a synchronized solution to treat WCP while reducing embodied carbon in construction materials.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100343"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hari Mantripragada , Rafael De Leon , Alexander Zoelle , Mark Woods , Eric Lewis , Timothy Fout , Travis Shultz , Eric Grol , Sally Homsy
{"title":"Research goals for minimizing the cost of CO2 capture when using steam methane reforming for hydrogen production","authors":"Hari Mantripragada , Rafael De Leon , Alexander Zoelle , Mark Woods , Eric Lewis , Timothy Fout , Travis Shultz , Eric Grol , Sally Homsy","doi":"10.1016/j.ccst.2024.100344","DOIUrl":"10.1016/j.ccst.2024.100344","url":null,"abstract":"<div><div>This paper presents a techno-economic assessment of adding state-of-the-art solvent-based CO<sub>2</sub> capture technologies to greenfield steam methane reforming (SMR)-based H<sub>2</sub> production plants and quantifies the impacts of improvements in CO<sub>2</sub> capture technology. Current conventional capture technologies are reviewed, and future technologies in intermediate and long-term scenarios are analyzed. The results show that SMR plants fitted with high efficiency solvent-based capture technologies consume the same amount of natural gas as a conventional SMR plant without capture, despite capturing most of the CO<sub>2</sub> and producing the same amount of H<sub>2</sub>. Overall, improvements in reboiler duty and reductions in capital costs can significantly reduce the cost of H<sub>2</sub> production and cost of capture. Particularly, the reboiler duty of pre-combustion capture and the capital cost of post-combustion capture have the greatest impact. Based on the results, research goals are suggested. Solvent development is recommended—particularly pre-combustion solvents—for reducing the reboiler duties, and process schemes to reduce the capital costs. Costlier but more efficient solvents can be considered. A sensitivity analysis using natural gas price shows that technological improvements can reduce the impacts of high natural gas prices. The degree of economic feasibility of CO<sub>2</sub> capture increases with improvements to the capture technology.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100344"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tharun Roshan Kumar , Johanna Beiron , V.R. Reddy Marthala , Lars Pettersson , Simon Harvey , Henrik Thunman
{"title":"Enhancing early-stage techno-economic comparative assessment with site-specific factors for decarbonization pathways in carbon-intensive process industry","authors":"Tharun Roshan Kumar , Johanna Beiron , V.R. Reddy Marthala , Lars Pettersson , Simon Harvey , Henrik Thunman","doi":"10.1016/j.ccst.2024.100338","DOIUrl":"10.1016/j.ccst.2024.100338","url":null,"abstract":"<div><div>Site-specific factors are expected to influence the indication of cost-optimal decarbonization technology for the carbon-intensive process industry. This work presents a framework methodology to enhance the comparative analysis of decarbonization alternatives using site-specific techno-economic analysis, incorporating pertinent site-specific factors to obtain an enhanced indication of the optimal decarbonization solution. Site-specific cost factors such as energy supply options, space availability, site-layout constraints, local CO<sub>2</sub> interconnections, forced downtime, and premature decommissioning are considered. Qualitative site-specific factors and technology-specific attributes are assessed via expert elicitation with a retrofitability assessment matrix, generalizable to other process industries considering their site-level conditions. The framework methodology is demonstrated with a steam cracker plant case study, considering post-combustion CO<sub>2</sub> capture and pre-combustion CO<sub>2</sub> capture with hydrogen-firing in the cracker furnaces as decarbonization options. Results complemented with factor-specific sensitivity analysis highlight the extent of cost-escalation due to site-specific factors. The primary cost-contributing factor to retrofitability was the impact on production in existing sites, followed by the opportunity cost of utilizing valuable space on-site. Finally, pre-combustion CO<sub>2</sub> capture was found to be the optimal solution, offering significant site-specific advantages, with the lowest CO<sub>2</sub> avoidance cost and reduced overall risk over the residual lifetime of the host plant.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100338"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shou-Feng Chang , Hsuan-Han Chiu , Han-Shu Jao , Jin Shang , Yu-Jeng Lin , Bor-Yih Yu
{"title":"Comprehensive evaluation of various CO2 capture technologies through rigorous simulation: Economic, equipment footprint, and environmental analysis","authors":"Shou-Feng Chang , Hsuan-Han Chiu , Han-Shu Jao , Jin Shang , Yu-Jeng Lin , Bor-Yih Yu","doi":"10.1016/j.ccst.2024.100342","DOIUrl":"10.1016/j.ccst.2024.100342","url":null,"abstract":"<div><div>The comprehensive evaluation of various CO<sub>2</sub> capture technologies from multiple perspectives remains limited, yet it is crucial for the successful implementation and deployment of carbon capture solutions to achieve carbon neutrality. This study presents a framework for assessing representative CO<sub>2</sub> capture processes from key point sources through rigorous simulation. Eight scenarios were developed and compared, comprising four standalone processes (<em>i.e.</em>, physical absorption (PHYABS), chemical absorption (CHEABS), dual-reflux pressure swing adsorption (DRPSA) and pressure-temperature swing adsorption (PTSA)) and four hybrid processes that integrate different adsorption and absorption processes. To evaluate each scenario, an integrated indicator, the Economics, Equipment footprint, and Environmental Score (EEES), was introduced. Our results indicate that the standalone CHEABS exhibits the lowest EEES of 0.120, highlighting its technological readiness and superiority over other processes. In contrast, the standalone PHYABS (EEES=0.168) and the hybrid PHYABS/PTSA process (EEES=0.242) emerge as viable alternatives, balancing environmental performance with economic and spatial considerations. Standalone PTSA (EEES=0.465) and DRPSA (EEES=0.706) are less favorable because of their higher utility demands and larger equipment footprints. Similarly, hybrid processes, namely, DRPSA/CHEABS (EEES=0.891), CHEABS/PTSA (EEES=0.837), and DRPSA/PHYABS (EEES=0.784), are less advantageous across all three metrics. Furthermore, sensitivity analyses indicated that carbon permit prices exert a negligible effect on the process economics. Additionally, it appears that government subsidies may play a crucial role in facilitating the development of CO<sub>2</sub> capture technologies within the industrial sector. Overall, this study provides a robust framework for evaluating CO<sub>2</sub> capture processes and offers practical recommendations for technology deployment.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100342"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Willingness to pay estimates for carbon capture and management: Evidence from a pilot choice experiment","authors":"Bruktawit M. Ahmed , Mahelet G. Fikru","doi":"10.1016/j.ccst.2024.100340","DOIUrl":"10.1016/j.ccst.2024.100340","url":null,"abstract":"<div><div>Utilizing a discrete choice experiment with 250 US electricity consumers, this study estimates willingness to pay (WTP) for each percentage increase in carbon dioxide captured and the preferred carbon management technique—permanent storage or industrial utilization. Results from an alternative-specific conditional logit model suggest a WTP of $0.13 for each percent increase in carbon capture, and an additional $5-$6 per month for industrial utilization over storage. In contrast, the estimated WTP for each percent increase in renewable energy is $0.25, suggesting that consumers value renewable energy nearly twice as much as carbon capture. These preliminary results indicate some preference for carbon capture, though not as strong as for cleaner energy, with a clearer preference for carbon utilization than storage. Further research is recommended to investigate variations in these preferences based on individual characteristics.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100340"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Wei , Ce Yang , Wentao Du , Min Deng , Zikang Qin , Yulei Ma , Zheng Yan , Lin Yang , Lu Yao , Wenju Jiang , Zhongde Dai
{"title":"Improving CO2 separation performances of Styrene-Butadiene-Styrene Triblock Copolymer Membranes by tunning its Microstructure via varying solvents and/or non-solvents","authors":"Jing Wei , Ce Yang , Wentao Du , Min Deng , Zikang Qin , Yulei Ma , Zheng Yan , Lin Yang , Lu Yao , Wenju Jiang , Zhongde Dai","doi":"10.1016/j.ccst.2024.100341","DOIUrl":"10.1016/j.ccst.2024.100341","url":null,"abstract":"<div><div>Microstructure in block copolymers has a critical impact on CO<sub>2</sub> separation performances. In this work, styrene-butadiene-styrene (SBS) triblock copolymer membranes were made using various solvent/non-solvent combinations. It was found that the solvents changed their microstructure thus the CO<sub>2</sub> separation performances were changed accordingly. CO<sub>2</sub> permeability in the range of 203.4 to 282, and CO<sub>2</sub>/N<sub>2</sub> selectivity in the range of 15.8 to 22.7. The highest CO<sub>2</sub> separation performance (P<sub>CO2</sub> 282 Barrer with CO<sub>2</sub>/N<sub>2</sub> selectivity of 20.5) was obtained using cyclohexane (CYH) as solvent. Furthermore, the CO<sub>2</sub> separation performances of the membrane can be further improved by DI water-induced microstructure rearrangement (P<sub>CO2</sub> 343.5 Barrer and CO<sub>2</sub>/N<sub>2</sub> selectivity 17.9). In addition, it was found that the rearranged membrane demonstrated stable gas separation performance after the membrane was stored under ambient conditions for about 120 days, clearly denoting that the CO<sub>2</sub> separation performances of block copolymeric membranes can be tuned by varying the solvents/non-solvents.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100341"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arun Kumar Senthilkumar , Mohanraj Kumar , Mohammed Abdul Kader , Mohd. Shkir , Jih-Hsing Chang
{"title":"Unveiling the CO2 adsorption capabilities of carbon nanostructures from biomass waste: An extensive review","authors":"Arun Kumar Senthilkumar , Mohanraj Kumar , Mohammed Abdul Kader , Mohd. Shkir , Jih-Hsing Chang","doi":"10.1016/j.ccst.2024.100339","DOIUrl":"10.1016/j.ccst.2024.100339","url":null,"abstract":"<div><div>Investigating alternate feedstocks is necessary because of the increasing need for sustainable materials and technologies. Though there are many advanced technologies for sequestering CO<sub>2</sub> from the atmospheric air. The most favourable route is using activated carbon derived from biomass. Biomass, a renewable material readily available at abundant levels, is one of the intriguing options for creating carbon nanostructures. In this review, various biomass sources like wood, plants, and aquatics are discussed for the production of materials with nanostructured carbon. Owing to their distinct characteristics, including their large surface area, pore size, and ability to attach various functional groups, they are the perfect source material for CO<sub>2</sub> adsorption. Additionally, tailoring the surface chemistry of nanostructured materials offers different kinds of adsorption mechanisms for CO<sub>2</sub> capture, which are covered in detail. Furthermore, this article offers a thorough review of carbon nanotube (CNT), graphene, and other diverse carbon structures obtained from different biomass sources, and also their potential future study areas are discussed. Even yet, there are still problems with optimizing desorption efficiency and raising yield levels. By concentrating on these areas of research, it will be possible to fully realize the potential of carbon nanostructures obtained from biomass. Additionally, the increasingly growing global commitment to ‘net zero’ with a high level of investments in clean solutions will open the door for more sustainable futures with cutting-edge material technologies and effective CO<sub>2</sub> adsorption.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100339"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancing carbon capture with bio-inspired membrane materials: A review","authors":"W. Rahmah , K. Khoiruddin , I.G. Wenten , S. Kawi","doi":"10.1016/j.ccst.2024.100318","DOIUrl":"10.1016/j.ccst.2024.100318","url":null,"abstract":"<div><div>This paper presents an innovative approach to carbon capture using bio-inspired membrane materials, addressing the urgent need to combat climate change and reduce atmospheric CO<sub>2</sub> levels. Traditional carbon capture technologies face limitations such as high operational costs and limited efficiency. In contrast, bio-inspired membranes, drawing from the efficiency and specificity of natural systems, offer higher CO<sub>2</sub> selectivity, reduced energy requirements, and increased sustainability. The paper explores the design principles and carbon capture mechanisms of bio-inspired membranes, highlighting significant advancements in material synthesis and structure. Key strategies include extreme wettability, facilitated transport mechanisms, and the use of porins and nanochannels. The integration of artificial photosynthesis and enzyme technologies into membrane systems is also examined. Innovations in material synthesis and composite development are showcased, demonstrating enhanced CO<sub>2</sub> separation across various industrial applications. Despite these promising attributes, bio-inspired membranes face significant challenges such as loss of mobile carriers, inadequate compatibility between polymeric matrices and facilitating agents, and difficulties in scaling up due to complex fabrication processes. These challenges underscore the need for continued research to optimize membrane design and functionality, ensuring their viability for large-scale implementation. The paper underscores the transformative potential of bio-inspired membrane materials in advancing carbon capture technologies, aligning with global efforts to mitigate climate change and achieve sustainable development goals.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100318"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}