Andrea Pierozzi , Niamh Faulkner , Adrienn Maria Szucs , Luca Terribili , Melanie Maddin , Federica Meloni , Kavya Devkota , Kristina Petra Zubovic , Paul C. Guyett , Juan Diego Rodriguez-Blanco
{"title":"Natural carbonation in alkali basalts: Geochemical evolution of Ca–Mg–Fe carbonates at Sverrefjellet, Svalbard","authors":"Andrea Pierozzi , Niamh Faulkner , Adrienn Maria Szucs , Luca Terribili , Melanie Maddin , Federica Meloni , Kavya Devkota , Kristina Petra Zubovic , Paul C. Guyett , Juan Diego Rodriguez-Blanco","doi":"10.1016/j.ccst.2025.100510","DOIUrl":"10.1016/j.ccst.2025.100510","url":null,"abstract":"<div><div>This study investigates hydrothermal carbonate cements in Quaternary alkali basalts from the Sverrefjellet volcano (Svalbard), offering insights into in-situ natural mineral carbonation. XRD and SEM-BSE-EDS analyses identify two main morphologies, nodular and banded, composed of solid-solution series between magnesite, calcite, and siderite, with distinct compositional zonation. Nodular cements usually show concentric zoning from Mg-rich cores (Ca<sub>0.05</sub>Mg<sub>0.95</sub>CO<sub>3</sub>) to Ca-enriched rims (Ca<sub>0.40</sub>Mg<sub>0.60</sub>CO<sub>3</sub>), reflecting evolving fluid chemistry. Fe-rich nodules (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>) are found near pyrite and display dissolution textures linked to localized redox reactions. Banded cements initiate at the basalt interface as Ca-rich proto-dolomite (Ca<sub>0.65–0.58</sub>Mg<sub>0.35–0.42</sub>CO<sub>3</sub>), transitioning outward to magnesite (Ca<sub>0.10</sub>Mg<sub>0.90</sub>CO<sub>3</sub>) and ferroan magnesite (Ca<sub>0.10</sub>Mg<sub>0.50</sub>Fe<sub>0.40</sub>CO<sub>3</sub>). Ca/Mg ratios decrease with distance from the interface (1.81 to 0.13), while Fe/Mg exceeds 13.5 locally due to Fe-rich coatings and inclusions. Four sequential crystallization stages were identified: (1) irregularly laminated Ca-Mg carbonates, (2) oscillatory-zoned dolomite-magnesite, (3) radiaxial-fibrous Ca-bearing magnesite, and (4) Fe-oxide-rich nanocrystalline rinds. Basaltic silicate and glass dissolution (forsterite, enstatite, anorthite) supplied divalent cations. Redox shifts promoted Fe incorporation. Early Ca<sup>2+</sup> depletion altered fluid chemistry toward Mg<sup>2+</sup> and Fe<sup>2+</sup>, while oscillatory zoning reflects episodic fluid compositional variations. Pyrite and siderite dissolution imply late-stage oxidation and secondary porosity development. These carbonates are hydrothermal in origin, supported by high-temperature phases, fan-like growth textures, and Ca-to-Mg/Fe transitions, consistent with fluid-rock interaction at 60–220 °C and pH 5.2–6.5. The absence of hydrated carbonates and presence of alteration phases also supports hydrothermal precipitation. Comparisons with engineered systems (e.g., CarbFix) underscore the role of temperature in overcoming kinetic barriers to magnesite formation, though metastable proto-dolomite and Mg sequestration in clays reveal limits to carbonation efficiency. These findings constrain predictive models for CO<sub>2</sub> mineralization in basaltic reservoirs, highlighting the interplay of hydrothermal conditions, fluid evolution, and reaction kinetics.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100510"},"PeriodicalIF":0.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerating CO2 sequestration in cementitious materials using carbonic anhydrase: Experimental insights into performance and mechanisms","authors":"Xiulin Chen, Zhidong Zhang, Ueli Angst","doi":"10.1016/j.ccst.2025.100511","DOIUrl":"10.1016/j.ccst.2025.100511","url":null,"abstract":"<div><div>Increasing atmospheric CO<sub>2</sub> levels require innovative mitigation strategies. Cementitious materials offer significant potential for CO<sub>2</sub> sequestration through carbonation. This study investigates the application of carbonic anhydrase (CA), an enzyme that catalyzes CO<sub>2</sub> hydration, to accelerate CO<sub>2</sub> sequestration in cementitious materials. We applied pH monitoring and p-NPA assay to evaluate CA activity under artificial cementitious environments. The results showed that CA activity significantly decreased at pH 13 but remained stable at pH below 12, suggesting potential applications of CA in lower-pH systems, such as demolished concrete, mineral waste, or cementitious materials with a low clinker content. Mixing CA directly into fresh cement pastes showed more carbonates formed and a higher reduction in pore volume than the control groups, demonstrating that CA accelerated early-stage CO<sub>2</sub> sequestration. When spraying the CA solution on crushed cement paste, we observed a dense layer of calcite on the surfaces of cement paste particles, meaning that early-stage carbonation resulted in a higher carbonate content than the control samples, particularly for smaller particles with larger surface areas. However, the carbonation efficiency decreased at the later stage, which is likely due to CA deactivation or surface densification limiting ions diffusion, reducing further carbonation enhancement at later stages. This study highlights the potential of CA to accelerate CO<sub>2</sub> sequestration in cementitious materials while emphasizing the challenges of high pH and complex ionic composition for CA performance. The findings suggest the need for stabilizing the enzyme’s activity or applying CA to low-clinker cementitious materials, and partially carbonated materials, such as recycled concrete aggregates, for CO<sub>2</sub> sequestration.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100511"},"PeriodicalIF":0.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liming Huang , Baodong Li , Xinping Zhu , Ning Li , Xin Zhang
{"title":"Cement and concrete as carbon sinks: Transforming a climate challenge into a carbon storage opportunity","authors":"Liming Huang , Baodong Li , Xinping Zhu , Ning Li , Xin Zhang","doi":"10.1016/j.ccst.2025.100490","DOIUrl":"10.1016/j.ccst.2025.100490","url":null,"abstract":"<div><div>Cement and concrete, while traditionally recognized as one of the main contributors to anthropogenic CO<sub>2</sub> emissions, also have untapped capacity to serve as substantial carbon sinks. This paper provides a comprehensive perspective on how engineered mineral carbonation can transform cement-based materials into carbon storage systems. We briefly review the fundamental mechanisms of CO<sub>2</sub> storage in cementitious systems and highlight current limitations in understanding of reaction kinetics, end-phase regulation and performance control. The effect of CO<sub>2</sub> uptake on material performance is critically evaluated with respect to the fresh performance, mechanical properties and long-term durability. Emphasis is placed on the valorization of alkaline industrial residues and emerging carbonatable binders, which offer sequestration capacity and sustainable resource use. A strategic roadmap is proposed with integration of scientific innovation, regulatory alignment, and carbon accounting in the life cycle, to accelerate the adoption of carbon-storing concrete. This perspective provides a framework to advance cement and concrete as engineered carbon sinks and supports the transition to a climate-positive construction industry.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100490"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144921585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zengli Wang , Yaheng Pang , Xiao Wang , Hong Xu , Hongxia Guo , Li Liu , Haijun xu , Wenquan Cui , Xinying Liu
{"title":"research progress on the optimization of RWGS catalytic systems and reactors and the integrated technology of CO2 capture and conversion","authors":"Zengli Wang , Yaheng Pang , Xiao Wang , Hong Xu , Hongxia Guo , Li Liu , Haijun xu , Wenquan Cui , Xinying Liu","doi":"10.1016/j.ccst.2025.100476","DOIUrl":"10.1016/j.ccst.2025.100476","url":null,"abstract":"<div><div>Global carbon emissions continue to rise, and carbon capture and utilization technologies have become a key path to carbon neutrality. The reverse water gas shift reaction (RWGS) has become a research hotspot in low-carbon conversion due to its ability to efficiently convert CO<sub>2</sub> into CO and thereby synthesize high-value fuels and chemicals. However, it faces bottlenecks such as high energy consumption and poor low-temperature selectivity, which restrict its industrial application. This article systematically reviews the latest progress of RWGS reaction in the resource utilization of CO<sub>2</sub>, focusing on reaction mechanism, optimization of catalytic system, reactor innovation and breakthroughs in integrated technology. In the design of catalytic systems, electronic structure regulation, interface and defect engineering significantly enhance the CO<sub>2</sub> conversion rate and product selectivity of thermal catalysis, photocatalysis and other systems. The reactor innovation breaks the thermodynamic equilibrium, optimizes mass transfer and overcomes thermodynamic limitations. The CO<sub>2</sub> capture and conversion integrated technology, through the design of adsorption-catalytic dual-functional materials, couples capture and RWGS reactions, significantly reducing the separation energy consumption and transportation costs of traditional processes. Although there are still challenges in the stability of catalytic materials, adaptability to complex gas sources and large-scale application, in the future, focusing on the development of multifunctional materials, the coupling of clean energy and the analysis of dynamic reaction mechanisms will promote the practical application of RWGS technology in industrial carbon reduction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100476"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144921584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-Long Xu , Tian-Ji Liu , Ya-Jun Wang , Ya-Nan Zeng , Liang-Yi Zhang , Kai-Li Dong , Yi-Tong Wang , Jun-Guo Li
{"title":"Machine learning-driven optimization of argon oxygen decarburization slag recycling for enhanced microalgal carbon sequestration","authors":"Wen-Long Xu , Tian-Ji Liu , Ya-Jun Wang , Ya-Nan Zeng , Liang-Yi Zhang , Kai-Li Dong , Yi-Tong Wang , Jun-Guo Li","doi":"10.1016/j.ccst.2025.100502","DOIUrl":"10.1016/j.ccst.2025.100502","url":null,"abstract":"<div><div>The sustainable management of hazardous argon oxygen decarburization (AOD) slag demands urgent attention owing to its calcium-magnesium-silicon leaching risks in landfill scenarios. This study presents an innovative strategy for waste valorization by repurposing three modified AOD slag variants (raw, aged, and carbonated) as nutrient supplements for <em>Chlorella pyrenoidosa</em> cultivation. Moreover, process parameters in microalgae cultivation, such as algal characteristics and complex operational conditions, will affect its yield and productivity. Traditional methods struggle to enable comprehensive understanding and application. Thus, quantitative prediction was conducted using 96 sets of total CO<sub>2</sub> carbon sequestration data (80% for the training set and 20% for the test set). Combined with three machine learning models and the Shapley Additive explanation (SHAP) algorithm, the intrinsic mechanisms by which five leaching elements (Ca, Mg, Al, Si, and Cr) regulate the efficient carbon sequestration of microalgae were analyzed. Notably, the random forest model excelled well in predicting CO<sub>2</sub> storage and elemental leaching, with performance metrics exceeding 0.87. This approach integrating solid waste recycling, utilization and model development achieves three objectives: (1) establishing a circular economy pathway for metallurgical waste, (2) reducing microalgal cultivation costs through waste-derived nutrient substitution, and (3) providing a machine learning blueprint for hazardous waste valorization process optimization. The research results provide guidance for implementing a sustainable strategy of biocarbon capture while reducing industrial waste.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100502"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145046436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaozu Wang , Yuqi Niu , Yunrong Zhao , Bocheng Yu , Jinyang Xu , Yongqing Xu , Shijie Yu , Xuan Bie , Qinghai Li , Yanguo Zhang , Jingyuan Ma , Shuzhuang Sun , Fei Song , Hui Zhou
{"title":"Optimization and deactivation mechanisms of molten salt-promoted MgO for intermediate-temperature CO2 capture","authors":"Yaozu Wang , Yuqi Niu , Yunrong Zhao , Bocheng Yu , Jinyang Xu , Yongqing Xu , Shijie Yu , Xuan Bie , Qinghai Li , Yanguo Zhang , Jingyuan Ma , Shuzhuang Sun , Fei Song , Hui Zhou","doi":"10.1016/j.ccst.2025.100492","DOIUrl":"10.1016/j.ccst.2025.100492","url":null,"abstract":"<div><div>The incorporation of nitrate molten salts has been demonstrated as an effective strategy to enhance the CO<sub>2</sub> uptake of MgO for intermediate-temperature (200–400 °C) CO<sub>2</sub> capture. However, the slow carbonation kinetics in flue gas capture, coupled with poor stability, hinder its industrial application. In this study, the addition of Na<sub>2</sub>CO<sub>3</sub> was found to significantly improve the sorption kinetics of MgO in a 15 % CO<sub>2</sub> atmosphere, achieving a CO<sub>2</sub> capacity of 19.9 mmol/g at 275 °C with a 15 mol% total promoter loading (Na<sub>2</sub>CO<sub>3</sub>/NaNO<sub>3</sub> = 1:4). Mechanistic analysis revealed that Na<sub>2</sub>CO<sub>3</sub> promotes the formation of Na<sub>2</sub>Mg(CO<sub>3</sub>)<sub>2</sub>, which acts as an effective nucleation site for MgCO<sub>3</sub> formation, accelerating the carbonation rate by a factor of eight. The Hard X-ray photoelectron spectroscopy (HAXPES) revealed that an increased Na/Mg ratio caused subsurface migration and aggregation of molten salts, leading to a permanent rise in local salt concentrations, which negatively affected CO<sub>2</sub> capture performance. These findings offer valuable insights into the structural degradation mechanisms and provide guidance for enhancing the stability of nitrate-enhanced MgO, thereby improving its potential for intermediate-temperature CO<sub>2</sub> capture.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100492"},"PeriodicalIF":0.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145027387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Riboldi, Rahul Anantharaman, Donghoi Kim, Rubén M. Montañés, Simon Roussanaly, Sai Gokul Subraveti
{"title":"Uncovering the opportunity space for hybrid CO₂ capture processes: A techno-economic exploration","authors":"Luca Riboldi, Rahul Anantharaman, Donghoi Kim, Rubén M. Montañés, Simon Roussanaly, Sai Gokul Subraveti","doi":"10.1016/j.ccst.2025.100498","DOIUrl":"10.1016/j.ccst.2025.100498","url":null,"abstract":"<div><div>There exists a portfolio of technologies that can be deployed for post-combustion CO<sub>2</sub> capture. Each technology performs optimally at specific conditions, which will hardly coincide with exact industrial applications. Hybrid processes combine two (or more) technologies to perform the CO<sub>2</sub> separation. The goal is to design processes that allow each technology in the hybrid configuration to operate optimally, resulting in cost-effective CO<sub>2</sub> capture solutions. This study explores the feasibility of realizing this potential by mapping the techno-economic potential of selected hybrid processes across a wide spectrum of CO<sub>2</sub> concentrations, plant scales and energy system contexts. The four hybrid processes considered are: vacuum pressure swing adsorption (VPSA)-membrane, membrane-VPSA, VPSA-CO<sub>2</sub> liquefaction and membrane-CO<sub>2</sub> liquefaction. A consistent techno-economic optimization framework is developed to identify the optimal process characteristics and associated minimum cost for each case considered. The performances are compared against those of conventional standalone capture technologies – VPSA, membranes and chemical absorption. Hybrid processes show promising results for medium-to-high CO<sub>2</sub> concentrations (≈13–30 % CO<sub>2</sub>), where costs in the range 40–70 €/t<sub>CO2</sub> appear achievable. However, even when different levels of electricity price and emission intensity are considered, chemical absorption and membranes remain the two most cost-efficient processes in most of the cases considered with hybrid processes at least 15 % more expensive. The material properties of membranes and adsorbents proved to have a significant impact on the expected performance. The sensitivity analysis showed how changing material properties assumption within relevant boundaries could modify the relative performance and advance hybrid processes, such as VPSA-membrane, as potentially attractive solutions, with the potential to decrease cost of >10 % at specific industrial conditions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100498"},"PeriodicalIF":0.0,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeonji Yeom, Yongseok Kim, Woosung Leem, Jongmin Park, Kyungsu Na
{"title":"Mechanistic elucidation of cascade CO2 hydrogenation enabled by Cu–Fe interfaces and oxygen vacancies","authors":"Hyeonji Yeom, Yongseok Kim, Woosung Leem, Jongmin Park, Kyungsu Na","doi":"10.1016/j.ccst.2025.100500","DOIUrl":"10.1016/j.ccst.2025.100500","url":null,"abstract":"<div><div>The direct hydrogenation of CO<sub>2</sub> using green hydrogen offers a sustainable route to produce carbon-neutral liquid hydrocarbons, emerging as a viable alternative to conventional naphtha cracking. Although Fe-based CuAl<sub>2</sub>O<sub>4</sub> catalysts have been widely studied for CO<sub>2</sub> hydrogenation, the mechanistic role of hydrogen spillover across dynamic Cu–Fe and associated oxygen vacancies has remained elusive. Here, the structure of FeK/CuAl<sub>2</sub>O<sub>4</sub> catalysts was systematically tailored by controlling the reduction temperature to elucidate the exsolution-driven restructuration of pristine catalyst structure and its influences on the catalytic performance. We investigated the reaction process using in-situ DRIFTS analysis, from which we for the first time observed a cascade mechanism activated by hydrogen spillover, revealing various elementary reaction steps: (i) preferential adsorption of CO<sub>2</sub> as carbonate species on oxygen vacancies created by Cu exsolution in CuAl<sub>2</sub>O<sub>4</sub> lattice, (ii) effective formate-mediated reverse water–gas shift (RWGS) reaction via the hydrogen spillover from exsolved Cu, (iii) promoted Fischer–Tropsch synthesis (FTS) reaction on Fe<sub>5</sub>C<sub>2</sub> formed by the facilitated Fe carburization at the exsolved Cu–Fe<sub>3</sub>O<sub>4</sub> interfaces, (iv) rapid desorption of hydrocarbons produced via controlled carbon chain growth. This cooperative interaction enabled the selective production of C<sub>5–11</sub> hydrocarbons, achieving the highest C<sub>5–11</sub> productivity of 290.7 mL g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>, surpassing our previous work at a CO<sub>2</sub> conversion of 36.4%. These findings establish a quantitative structure–performance–mechanism relationship and offer design principles for selectivity control toward desired hydrocarbon ranges in multifunctional CO<sub>2</sub> hydrogenation catalysts.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100500"},"PeriodicalIF":0.0,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144933166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianqiao Zhang , Liang Zhao , Li Jin , Chen Zhu , Haiou Wang , Lijuan Wang
{"title":"Optimizing regional CCUS clusterization deployment for multi-industrial sectors: A carbon neutrality pathway for emission-intensive region","authors":"Jianqiao Zhang , Liang Zhao , Li Jin , Chen Zhu , Haiou Wang , Lijuan Wang","doi":"10.1016/j.ccst.2025.100495","DOIUrl":"10.1016/j.ccst.2025.100495","url":null,"abstract":"<div><div>Rapid mitigation of global climate change demands transformative technological innovations to achieve deep decarbonization. China has pledged the dual carbon goals of peaking carbon emissions by 2030 and achieving carbon neutrality by 2060, underscoring the urgency and scale of the challenge. While Carbon Capture, Utilization, and Storage (CCUS) has emerged as a promising approach, its large-scale implementation in emission-intensive industrial clustered region faces significant infrastructural challenges. Specifically, the optimal layout of regional CCUS clusterization and CO<sub>2</sub> transport networks remains unclear, particularly in highly industrialized regions such as China’s Jiangsu Province, where diverse industrial sectors and varied geological formations create complex source-sink matching challenges for CCUS deployment. In this study, we developed the SPATIAL (Strategic Pipeline And Technical Integration Analysis Layout) model that enables the optimization of CCUS deployment in emission-intensive regions from an industrial cluster perspective by integrating data of emissions from major industrial sources and storage potential from geological formations. The model was applied to Jiangsu Province under high, medium, and low emission reduction target scenarios through source-sink matching. Results show significant spatial heterogeneity between emission sources and geological storage resources in Jiangsu Province. For example, southern Jiangsu, characterized by high-intensity CO<sub>2</sub> emission clusters, accounts for 63 % of the province’s total emissions while holding only 0.03 % of the province’s geological storage potential. The optimal layout for regional CCUS clusterization deployment under high, medium, and low emission reduction targets achieve total CO<sub>2</sub> storage of 1.4, 1.1, and 0.9 Gt, respectively, supported by pipeline networks of 4629, 2513, and 1433 km. These layouts demonstrate economies of scale, with unit emission reduction costs ranging from 93.84 to 179.31 CNY/t CO<sub>2</sub>. Our findings establish the technical and economic feasibility of achieving significant emission reductions through regional CCUS clusterization deployment and address a critical gap in ignoring the hot spot phenomenon of industrial cluster. This study further emphasizes the importance of inter-regional coordination, regional geological storage resource management, and integrated infrastructure planning in realizing cost-effective CCUS clusterization implementation. This study provides policymakers with actionable insights for formulating CCUS clusterization strategies in emission-intensive industrial regions, contributing to the broader goal of regional carbon neutrality.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100495"},"PeriodicalIF":0.0,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}