Carbon Capture Science & Technology最新文献

筛选
英文 中文
CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East 通过地下成矿捕获二氧化碳 实现中东长期封存和脱碳的地质环境和工程前景
Carbon Capture Science & Technology Pub Date : 2024-09-16 DOI: 10.1016/j.ccst.2024.100293
{"title":"CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East","authors":"","doi":"10.1016/j.ccst.2024.100293","DOIUrl":"10.1016/j.ccst.2024.100293","url":null,"abstract":"<div><p>Mineral carbonation or mineralization of CO<sub>2</sub> using rocks or waste industrial materials is emerging as a viable carbon capture and storage (CCS) technology, especially for smaller and medium-scale emitters where geological sequestration is not feasible. During mineralization processes, CO<sub>2</sub> chemically reacts with alkaline earth metals in waste materials or rocks to form stable and non-toxic carbonates <em>In situ</em> mineral carbonation holds promise due to ample resources and enhanced security. However, it is still in its early stages, with higher transport and storage costs compared to geological storage in sedimentary basins. <em>Ex situ</em> mineral carbonation has shown promise at pilot and demonstration scales, but its widespread application is hindered by high costs, ranging from US$50-US$300/ton of sequestered CO<sub>2</sub>. This review delves into the current progress of proposed mineralization technologies and their potential in reducing the overall cost of CO<sub>2</sub> sequestration. The discussion critically analyzes various factors affecting carbonation reactions, such as temperature, pressure, leaching agents, solid-to-liquid ratio, and mineralogy for geological settings relevant to the Middle East and the net-zero strategy established within Gulf Cooperation Countries (GCC). Furthermore, the potential commercialization of mineral carbonation, emphasizing the importance of reducing energy consumption and production costs to make the process economically viable is highlighted, offering directions for circular economy and mineral carbonation as a substantial carbon mitigation tool in the Middle East region. Life Cycle Assessment and Techno-Economic Analysis) was also reviewed to provide a comprehensive understanding of both the environmental and economic implications of a CO<sub>2</sub> capture via subsurface mineralization</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001052/pdfft?md5=8903ecec69272ce814add40e706429d8&pid=1-s2.0-S2772656824001052-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142243321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam 在有蒸汽存在的情况下,对集成二氧化碳捕获和甲烷化的双功能材料进行原位氢化
Carbon Capture Science & Technology Pub Date : 2024-09-08 DOI: 10.1016/j.ccst.2024.100291
{"title":"In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam","authors":"","doi":"10.1016/j.ccst.2024.100291","DOIUrl":"10.1016/j.ccst.2024.100291","url":null,"abstract":"<div><p>The impacts of steam on hydrogenation of dual function materials (DFM) for Integrated CO<sub>2</sub> Capture and <em>in-situ</em> methanation (ICCM) is a new area requiring detailed investigations prior to industrialization. This work investigated impacts from steams on hydrogenation of Ru-Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> DFM for ICCM that containing Na<sub>2</sub>O adsorbent, Ru sites, and γ-Al<sub>2</sub>O<sub>3</sub> support. DFM performance was examined in cyclic reactions as introducing external steam during hydrogenation, and the behaviors of adsorbed CO<sub>2</sub> species during hydrogenation were characterized by <em>in-situ</em> DRIFTS and H<sub>2</sub>-TPSR. CH₄ selectivity decreased sharply from 84.3 % to 1.2 % as increasing external steam concentrations to 20 vol.%, and the conversion of adsorbent component decreased from 298.5 μmol g<sup>-1</sup> to 167.1 μmol g<sup>-1</sup>. <em>b</em>-CO<sub>3</sub><sup>2-</sup> and <em>m</em>-CO<sub>3</sub><sup>2-</sup> formed at Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> interface were the carbonate species that could be hydrogenated into CH<sub>4</sub>, some of which were desorbed into CO<sub>2</sub> due to moisture-driven desorption effects. With the presence of external steam in H<sub>2</sub> reactants, the conversion of carbonate species is a competing process between hydrogenation and moisture-driven desorption. In ICCM reaction with external steam present, <em>b</em>-CO<sub>3</sub><sup>2-</sup> was preferred to be desorbed into CO<sub>2</sub>; while for <em>m</em>-CO<sub>3</sub><sup>2-</sup>, desorption into CO<sub>2</sub> by steam and hydrogenation into CH<sub>4</sub> proceeded in parallel. Strong moisture-driven desorption effects from steam product were demonstrated in a fixed-bed reactor, which also led to rapid decrease of localized selectivity of CH<sub>4</sub> along bed height.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001039/pdfft?md5=40bbc551bf4434d0f251bd58b0bc43ce&pid=1-s2.0-S2772656824001039-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in dual-phase carbonate membranes for carbon capture and syngas production 用于碳捕获和合成气生产的双相碳酸酯膜的研究进展
Carbon Capture Science & Technology Pub Date : 2024-09-03 DOI: 10.1016/j.ccst.2024.100288
{"title":"Advancements in dual-phase carbonate membranes for carbon capture and syngas production","authors":"","doi":"10.1016/j.ccst.2024.100288","DOIUrl":"10.1016/j.ccst.2024.100288","url":null,"abstract":"<div><p>Globally, the rise in the environmental awareness on the reduction of greenhouse gas emissions has spurred the development of carbon capture and utilization (CCU) technologies, including membrane separation. Among the membrane separation technologies, dual-phase carbonate membrane is feasible for post-combustion carbon capture given its high thermal and chemical stabilities at high temperatures. The integration of carbon capture and dry reforming of methane (DRM) in a catalytic dual-phase carbonate membrane reactor to function as a single device for syngas production is an emerging area of research. This paper aims to provide a comprehensive review on the progress of the dual-phase carbonate membranes and membrane reactors in carbon capture and syngas production. The working mechanism and performance of three types of carbonate membranes in CO<sub>2</sub> separation from various aspects (i.e., material selection, membrane configuration, modifications on the materials, and operating conditions) are thoroughly examined. Additionally, an overview of the reactions involved (i.e., DRM, steam reforming of methane (SRM), and partial oxidation of methane (POM)) and catalyst design (i.e., nickel-based supported with metal oxides and zeolites) is provided. A detailed comparison of the performance of the catalytic dual-phase ceramic-carbonate membrane reactor using different types of catalysts for syngas production is presented. Finally, the review is concluded with a discussion of the challenges, recommendations, and future insights on the development of dual-phase carbonate membranes and membrane reactors.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001003/pdfft?md5=a57f56b44633912d2a05ce77ebe60227&pid=1-s2.0-S2772656824001003-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 to fuel: Role of polymer electrolytes on efficiency and selectivity 二氧化碳转化为燃料:聚合物电解质对效率和选择性的作用
Carbon Capture Science & Technology Pub Date : 2024-09-02 DOI: 10.1016/j.ccst.2024.100289
{"title":"CO2 to fuel: Role of polymer electrolytes on efficiency and selectivity","authors":"","doi":"10.1016/j.ccst.2024.100289","DOIUrl":"10.1016/j.ccst.2024.100289","url":null,"abstract":"<div><p>Global primary energy consumption, which heavily depends on fossil fuels, is on track for depletion, with projections suggesting exhaustion by 2100. This trajectory is further compounded by the persistent rise in atmospheric CO<sub>2</sub> levels, currently at 420 ppm, which significantly contributes to climate change and its detrimental environmental consequences. To address this urgent challenge, various strategies have been proposed, including CO<sub>2</sub> capture and storage, as well as its conversion into usable fuels. Leveraging the abundance of CO<sub>2</sub> as a carbon source, coupled with sustainable energy resources such as solar, wind, and thermal energy, holds promise for generating value-added goods while mitigating environmental harm. This review focuses on the electrochemical reduction of CO<sub>2</sub>, presenting a dual-pronged approach aimed at decreasing atmospheric CO<sub>2</sub> levels. The imperative to simultaneously combat declining atmospheric CO<sub>2</sub> concentrations and advance cleaner, sustainable energy sources underscores the urgency of this endeavor. Specifically, we highlight the pivotal role of diverse polymer electrolytes, encompassing cation, anion, and bipolar membranes, in facilitating electrochemical CO<sub>2</sub> reduction. Exploring the impact of functional groups within these membranes on CO<sub>2</sub> reduction reaction provides insights into potential advancements in synthesis of eco-friendly fuel from conversion of CO<sub>2</sub>.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001015/pdfft?md5=826178bede5005f0b827958623d4b521&pid=1-s2.0-S2772656824001015-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of liquefaction cycles applied to CO2 coming from onshore pipeline to offshore ship transportation 优化从陆上管道到近海船舶运输的二氧化碳的液化周期
Carbon Capture Science & Technology Pub Date : 2024-08-30 DOI: 10.1016/j.ccst.2024.100280
{"title":"Optimization of liquefaction cycles applied to CO2 coming from onshore pipeline to offshore ship transportation","authors":"","doi":"10.1016/j.ccst.2024.100280","DOIUrl":"10.1016/j.ccst.2024.100280","url":null,"abstract":"<div><p>In the field of the CO<sub>2</sub> transportation for the Carbon Capture, Utilization and Storage (CCUS) process chain, several analyses show that, for a large-scale CO<sub>2</sub> transportation, pipeline transportation is the preferred method on land due to its lower cost. Barges also present a feasible alternative if the capture site is near a waterway. Maritime transport becomes more advantageous than pipelines, particularly over long distances and across ocean. Despite the need to liquefy CO<sub>2</sub> and to add temporary storage facilities for loading and unloading onto ships, beyond a certain distance at fixed CO<sub>2</sub> transported and plant life, ship transport optimal at pressures of 7 or 15 bar depending on the type of vessel. Impurities in CO<sub>2</sub>, arising from various industrial processes and variable performances of capture technologies, increase energy consumption during compression and could cause corrosion risks. Specifications for CO<sub>2</sub> ship transport limit the concentration of certain impurities with strict thresholds. Methods for purifying CO<sub>2</sub>, such as the two-flash system and stripping column, have been proposed to meet these specifications. The studied CO<sub>2</sub> liquefaction methods show that hybrid cycles, combining open cycle with Joule-Thompson expansion and closed cycle with cooling machine offer reduced energy consumption and improved CO<sub>2</sub> recovery compared to open or closed cycles. In the presence of the maximum threshold of impurities in the pipeline, energy consumption can nearly double from 21.8 kWh/t<sub>CO</sub><sub>2</sub> to 40.9 kWh/t<sub>CO</sub><sub>2</sub>, with the highest recovery rising 98.1 %. This research underscores the importance of optimizing CO<sub>2</sub> transport strategies to facilitate the deployment of CCUS technologies.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000927/pdfft?md5=6c375e09275c5cc9e9ff5fa74a958a3b&pid=1-s2.0-S2772656824000927-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and challenges about Ni-based dual functional materials for alternating cycles of CO2 storage and in-situ hydrogenation to CH4 镍基双功能材料在二氧化碳封存和原位加氢制甲烷交替循环方面的进展与挑战
Carbon Capture Science & Technology Pub Date : 2024-08-30 DOI: 10.1016/j.ccst.2024.100278
{"title":"Advances and challenges about Ni-based dual functional materials for alternating cycles of CO2 storage and in-situ hydrogenation to CH4","authors":"","doi":"10.1016/j.ccst.2024.100278","DOIUrl":"10.1016/j.ccst.2024.100278","url":null,"abstract":"<div><p>The utilization of dual functional materials (DFMs) in integrated CO<sub>2</sub> capture and utilization (ICCU) has been attracted increasingly attention, with the conversion of CO<sub>2</sub> to CH<sub>4</sub> through the Sabatier reaction offering significant thermodynamic benefits. Ni, recognized for its catalytic efficiency among transition metals due to its cost-effectiveness and natural abundance while Ni-based DFMs have been favored to promote the conversion of CO<sub>2</sub> to value-added chemicals. In the past decades, significant efforts have been dedicated to developing more efficient Ni-based catalysts to enhance CO<sub>2</sub> conversion and CH<sub>4</sub> selectivity. This study researched the thermodynamic and kinetic aspects of ICCU and summarized the recent industrial process at first. Then, an overview of the advancements in Ni-based DFMs, including synthesis methods, support materials and promoters were provided. Next, the mechanisms of CO<sub>2</sub> methanation were also briefly addressed to provide a comprehensive understanding of the process. Finally, the future prospects were guided the development and application scenarios of Ni-based DFMs in the ICCU.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000903/pdfft?md5=704b7d02887e93c1ece7d291d5759742&pid=1-s2.0-S2772656824000903-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation 将一羧酸盐和二羧酸盐基离子液体浸渍到 ZIF-8 中,提高二氧化碳的选择性,用于燃烧后分离
Carbon Capture Science & Technology Pub Date : 2024-08-29 DOI: 10.1016/j.ccst.2024.100282
{"title":"Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation","authors":"","doi":"10.1016/j.ccst.2024.100282","DOIUrl":"10.1016/j.ccst.2024.100282","url":null,"abstract":"<div><p>Post-combustion carbon dioxide (CO<sub>2</sub>) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO<sub>2</sub> and nitrogen (N<sub>2</sub>) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C<sub>2</sub>MIM]<sub>2</sub>[Glu]@ZIF-8 showed the highest CO<sub>2</sub> gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N<sub>2</sub> sorption in the low-pressure range. The ideal CO<sub>2</sub>/N<sub>2</sub> selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C<sub>2</sub>MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N<sub>2</sub> sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000940/pdfft?md5=51df7ab5a594eddd1a6cbd534fe44652&pid=1-s2.0-S2772656824000940-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into CO2/CH4 separation by ionic liquids confined in MXene membrane from molecular level 从分子水平洞察封闭在 MXene 膜中的离子液体分离 CO2/CH4 的过程
Carbon Capture Science & Technology Pub Date : 2024-08-29 DOI: 10.1016/j.ccst.2024.100279
{"title":"Insight into CO2/CH4 separation by ionic liquids confined in MXene membrane from molecular level","authors":"","doi":"10.1016/j.ccst.2024.100279","DOIUrl":"10.1016/j.ccst.2024.100279","url":null,"abstract":"<div><p>Composite membranes incorporating ionic liquids (ILs) within MXene demonstrate promising potential for CO<sub>2</sub> separation. However, studies on the separation of CO<sub>2</sub>/CH<sub>4</sub> using MXene-confined ILs membranes are limited, especially in terms of understanding the mechanisms at the molecular level. In this work, the system of CO<sub>2</sub>/CH<sub>4</sub> in MXene-confined ILs membranes was studied by molecular dynamic simulations. The number density results reveal that MXene stratifies the ILs between the layers, with higher concentrations of ILs near MXene and lower concentrations in the middle layer. Notably, MXene has a greater impact on cations distribution compared to anions. As the layer spacing of MXene expands from 1.5 to 3 nm, the interaction between MXene and IL weakens, while that between the cations and anions strengthens. The confined ILs enhance gas solubility capability but impede gas diffusion. CO<sub>2</sub> is distributed closer to anions, while CH<sub>4</sub> tends to be closer to cations, with the distance between CH<sub>4</sub> and cations decreasing as the layer spacing increases. Additionally, with the increase of layer distance, the proportion of confined ILs gradually decreases, and the gas diffusion coefficient gradually increases. Furthermore, compared to 1-Ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF<sub>4</sub>]) and 1-Ethyl-3-methylimidazolium hexafluorophosphate ([EMIM][PF<sub>6</sub>]), MXene-confined 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TF<sub>2</sub>N]) is identified as the most effective for CO<sub>2</sub>/CH<sub>4</sub> separation, owing to its superior CO<sub>2</sub> solubility and highest diffusion selectivity.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000915/pdfft?md5=d324e39332a91a857eae638474305ce0&pid=1-s2.0-S2772656824000915-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on assessing innovative materials and technologies for carbon dioxide conversion to valuables 二氧化碳转化为贵重物品的创新材料和技术评估综述
Carbon Capture Science & Technology Pub Date : 2024-08-29 DOI: 10.1016/j.ccst.2024.100287
{"title":"A review on assessing innovative materials and technologies for carbon dioxide conversion to valuables","authors":"","doi":"10.1016/j.ccst.2024.100287","DOIUrl":"10.1016/j.ccst.2024.100287","url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) is a ubiquitous molecule that is essential for the existence of life on Earth. However, the ever-increasing anthropogenic CO<sub>2</sub> emissions in the environment have resulted in global warming-via-climate change. CO<sub>2</sub> is an inexpensive substrate that can be utilized to produce fuels and value-added chemicals through numerous chemical and biological processes to boost the circular economy with a negative carbon cycle in the future. Conventional technologies practiced capturing CO<sub>2</sub> suffer from several limitations, such as high capital costs, high energy input, complicated designs, CO<sub>2</sub> leakage, and kinetic limitations in various steps. To offset these limitations and negative impacts, this study assessed the emerging CO<sub>2</sub> capture and sequestration (CCS) technologies in value-added products that can boost the nation's economy and lower energy consumption while preserving global environmental quality. Various emerging CCS technologies, such as heterogeneous catalytic conversion, plasma technology, photocatalytic conversion, and other technologies (electrochemical or electrocatalysis, photoelectrochemical, thermo-catalysis, and biochemical and radiolysis), were discussed for efficient utilization and transformation of CO<sub>2</sub>. In addition, it also explored how the various transformation technologies affected the characteristics, economic value, and quality of value-added chemicals/fuels. This review also covered environmental and economic implications from scientific perspectives, and lastly, the future outlook and associated challenges were discussed.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277265682400099X/pdfft?md5=86ce1f6eeffab40e5e339c8112393eaf&pid=1-s2.0-S277265682400099X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The application of spent catalysts from catalytic pyrolysis of plastic waste as solid functional materials 将塑料废弃物催化热解产生的废催化剂用作固体功能材料
Carbon Capture Science & Technology Pub Date : 2024-08-28 DOI: 10.1016/j.ccst.2024.100285
{"title":"The application of spent catalysts from catalytic pyrolysis of plastic waste as solid functional materials","authors":"","doi":"10.1016/j.ccst.2024.100285","DOIUrl":"10.1016/j.ccst.2024.100285","url":null,"abstract":"<div><p>Plastic consumption has surged due to population growth and shifts in consumer behavior. Upcycling aims to address plastic waste by finding innovative reuse strategies. By integrating waste plastic into new products and materials, upcycling supports a more sustainable and environmentally friendly economic model. This reduces the overall environmental footprint, including CO<sub>2</sub> emissions, associated with plastic consumption. Moreover, converting plastic waste into carbon nanotubes, can effectively sequester carbon. This means that carbon is captured and stored in a stable form, preventing its release into the atmosphere as CO<sub>2</sub>. This contributes directly to reducing net emissions. Recent interest in upcycling strategies includes producing target-oriented catalysts to reform plastic waste into carbon nanotubes embedded spent catalysts, offering potential for various applications. However, research in this area is scattered and lacks comprehensive conclusions. This review critically examines the use of spent catalysts from plastic waste pyrolysis and identifies their suitability for practical applications. It suggests focusing on the catalytic pyrolysis of plastic waste for target-oriented catalysts, as they offer good hydrogen yield and post-pyrolysis use in targeted applications. The unique structure of these catalysts enhances performance compared to commercial alternatives, but post-treatment is crucial to remove impurities for optimal performance. The upcycling of plastic waste into CNTs-metal composites substantially contributes to Sustainable Development Goals 7, 9, 12 and 13, by taking action to combat climate change and by guaranteeing access to affordable, clean, and sustainable energy. This review aims to be helpful for researchers who are currently new to the topic and want to continue research in this domain.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000976/pdfft?md5=2563c05b5f50ddb3fca43f361df1c46b&pid=1-s2.0-S2772656824000976-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信