Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo
{"title":"Pore-scale study of CO2 desublimation in a contact liquid","authors":"Timan Lei , Geng Wang , Junyu Yang , Jin Chen , Kai H. Luo","doi":"10.1016/j.ccst.2024.100329","DOIUrl":"10.1016/j.ccst.2024.100329","url":null,"abstract":"<div><div>Cryogenic carbon capture (CCC) designed to operate in a contact liquid is an innovative technology for capturing <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> from industrial flue gases, helping mitigate climate change. Understanding <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation properties in a contact liquid is crucial to optimizing CCC, but is challenging due to the complex physics involved. In this work, a multiphysics lattice Boltzmann (LB) model is developed to investigate <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation in a contact liquid for various operating conditions, with the multiple and fully-coupled physics being incorporated (i.e., two-phase flow, heat transfer across three phases, <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> transport between the gas and liquid, homogeneous and heterogeneous desublimation of <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span>, and solid <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> generation). The <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation process in a contact liquid is well reproduced. Moreover, parametric studies and quantitative analyses are set out to identify optimal conditions for CCC. The decreasing liquid temperature (<span><math><msub><mi>T</mi><mi>l</mi></msub></math></span>) and flue gas temperature (<span><math><msub><mi>T</mi><mn>0</mn></msub></math></span>) are found to accelerate the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhance the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture velocity (<span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>). However, excessively low <span><math><msub><mi>T</mi><mi>l</mi></msub></math></span> and <span><math><msub><mi>T</mi><mn>0</mn></msub></math></span> values should be avoided. These conditions increase the energy consumption of cooling while only marginally improving <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span>, due to the limited <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> supply. The CCC system performs effectively when purifying flue gases with high <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> content (<span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span>). This is because the large <span><math><msub><mi>Y</mi><mn>0</mn></msub></math></span> accelerates the <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> desublimation rate and enhances the overall <span><math><msub><mtext>CO</mtext><mn>2</mn></msub></math></span> capture efficiency. A high gas injection velocity (or <span><math><mtext>Pe</mtext></math></span>) is beneficial for amplifying <span><math><msub><mi>v</mi><mi>c</mi></msub></math></span> by increasing the gas–liquid interfaces and enhancing the <span><math><msub><mtext>CO","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zihan Chen , Yiyu Liu , Eryu Wang , Huajie You , Qi Gao , Fan David Yeung , Jia Li
{"title":"Advancing the deployment and information management of direct air capture: A solution enabled by integrating consortium blockchain system","authors":"Zihan Chen , Yiyu Liu , Eryu Wang , Huajie You , Qi Gao , Fan David Yeung , Jia Li","doi":"10.1016/j.ccst.2024.100300","DOIUrl":"10.1016/j.ccst.2024.100300","url":null,"abstract":"<div><div>Direct air capture (DAC) is a critical and emerging Negative Emissions Technology (NET) that directly removes CO2 from the atmosphere, significantly contributing to climate change. However, the deployment and management of large-scale DAC faces challenges such as collections and analysis of energy consumption data, intricate device and system management, emission prediction and operation strategy, precise carbon footprint tracking, etc. This paper proposes the integration of blockchain technology with DAC systems to address these challenges, utilizing blockchain's inherent properties of immutability, security, and transparency. The implementation strategy includes the development of a DAC consortium blockchain system, leveraging a consensus mechanism,<span><span><sup>1</sup></span></span> ECDSA encryption,<span><span><sup>2</sup></span></span> IoT<span><span><sup>3</sup></span></span> integration, and digital signatures. Preliminary modeling of the proposed system suggests potential improvements in operational efficiency and a reduction in data inaccuracies. The proposed system underscores the system's ability to streamline identity verification, improve data collection accuracy, and facilitate secure, confidential information sharing among DAC stakeholders. By enhancing the efficiency and reliability of DAC operations, this approach supports the scalable and effective deployment of NETs in the global effort to combat climate change. Future research will focus on empirical validation through pilot projects and simulations to further substantiate these claims.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingyu Zan , Panjie Ji , Yuxuan Ying , Long Jiang , Xiaoqing Lin , Angjian Wu , Qi Lu , Qunxing Huang , Xiaodong Li , Jianhua Yan
{"title":"Offshore carbon storage from power plants based on real option and multi‐period source‐sink matching: A case study in the eastern coastal China","authors":"Xingyu Zan , Panjie Ji , Yuxuan Ying , Long Jiang , Xiaoqing Lin , Angjian Wu , Qi Lu , Qunxing Huang , Xiaodong Li , Jianhua Yan","doi":"10.1016/j.ccst.2024.100314","DOIUrl":"10.1016/j.ccst.2024.100314","url":null,"abstract":"<div><div>Carbon capture utilization and storage (CCUS) emerges as a pivotal strategy for CO<sub>2</sub> reduction in the power sector, particularly focusing on the overlooked domain of offshore storage along China's east coast. In spite of the potential high costs, irreversible investments, and lengthy development, offshore storage can still be prospective. Considering autonomous decision-making among emission sources, this study pioneers a CO<sub>2</sub> offshore storage investment decision model tailored for coal-fired and gas-fired power plants. Innovating an offshore storage source-sink matching model with a real options model and introducing a pipeline network optimization model allows a realistic source-sink matching strategy to be explored under optimal investment timing. According to the results, among 154 large stationary emission sources in Zhejiang Province, offshore storage could reduce CO<sub>2</sub> emissions by 4.59 Gt, utilizing the Qiantang, Minjiang, and Fuzhou depressions. It is economically feasible to implement offshore storage with a whole-process unit cost of 368.8 CNY/t<sub>CO2</sub>, mainly dominated by capture costs. A hybrid carbon tax-subsidy policy promotes carbon reduction and economic benefits, offering a more effective incentive for emission sources to invest in offshore storage than a single policy. At a hybrid policy price of 250 CNY/t<sub>CO2</sub>, all 27 selected emission sources are projected to invest in offshore storage by 2048, with a preference for the Qiantang depression as the storage site. Practically, this study provides important technical support and guidance for the large-scale deployment of offshore storage.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongwei Li , Bo Peng , Shuaishuai Lv , Qiuming Zhou , Zhennan Yan , Xuebin Luan , Xuandong Liu , Congcong Niu , Yanfang Liu , Jili Hou , Zhiqiang Wang , Ying Chen , Binhang Yan , Zhigang Tang , Chaopeng Hou , Kang Qin , Yu Wu , Run Xu
{"title":"Immobilized heterogeneous catalysts for CO2 hydrogenation to formic acid: A review","authors":"Hongwei Li , Bo Peng , Shuaishuai Lv , Qiuming Zhou , Zhennan Yan , Xuebin Luan , Xuandong Liu , Congcong Niu , Yanfang Liu , Jili Hou , Zhiqiang Wang , Ying Chen , Binhang Yan , Zhigang Tang , Chaopeng Hou , Kang Qin , Yu Wu , Run Xu","doi":"10.1016/j.ccst.2024.100322","DOIUrl":"10.1016/j.ccst.2024.100322","url":null,"abstract":"<div><div>Formic acid is a promising hydrogen storage medium that can be produced via the catalytic hydrogenation of CO<sub>2</sub>. Compared with heterogeneous catalysts, homogeneous catalysts composed of organic metal complexes, especially Ru- and Ir-based catalysts, show higher activity and selectivity for the catalytic reaction of CO<sub>2</sub> hydrogenation to formic acid; however, it is difficult to separate them from the reaction products. Heterogeneous catalysts prepared by immobilizing metal complexes onto solid materials demonstrate high activity and selectivity, similar to homogeneous catalysts, and solve the problem of catalyst separation. For preparing such catalysts, the choice of support is particularly important because effective anchoring is the key to realize catalyst recycling. Supported heterogeneous catalysts are mainly based on inorganic oxides and porous polymers (e.g., metal-organic frameworks, covalent organic frameworks, and organic polymers). This review comprehensively examines the advancements in immobilized heterogeneous catalysts for the hydrogenation of CO<sub>2</sub>, focusing on support materials, reaction mechanisms, catalyst immobilization conditions, and the impact of various reaction conditions on catalytic performance. Furthermore, we provide a comparative analysis of immobilized catalysts and their homogeneous counterparts, underlining the advantages of site isolation and the role of support materials in enhancing catalytic activity. The design and development of immobilized heterogeneous catalysts are important in the field of CO<sub>2</sub> hydrogenation to formic acid because of their abundant active sites, excellent catalytic stability, flexible chemical modifiability, and low preparation cost. We conclude with perspectives on future research directions, emphasizing the need for innovative catalyst designs and optimization of reaction conditions to achieve sustainable and economically viable CO<sub>2</sub> hydrogenation processes.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Jiang , Joe Yeang Cheah , Zetong Liu , Zhaojie Fang , Xinyi Guan , Yue Wang , Shengping Wang , Xinbin Ma
{"title":"Mass granulation of Al-promoted CaO-based sorbent via moulding-crushing methods for cyclic CO2 capture","authors":"Tao Jiang , Joe Yeang Cheah , Zetong Liu , Zhaojie Fang , Xinyi Guan , Yue Wang , Shengping Wang , Xinbin Ma","doi":"10.1016/j.ccst.2024.100321","DOIUrl":"10.1016/j.ccst.2024.100321","url":null,"abstract":"<div><div>Calcium looping (CaL) process, as an effective way to achieve CO<sub>2</sub> mitigation from high-temperature flue gas streams, is one of the most promising alternatives to amine scrubbing (a well-established technology for industrial post-combustion CO<sub>2</sub> capture). CaO sorbent is considered to be an ideal CO<sub>2</sub> adsorption material. Moreover, the development of granulation/pelletization techniques along with the mass preparation of the CaO-based sorbent is imperative for realistic large-scale applications. This work proposes two practicable moulding-crushing techniques for the scale-up granulation of CaO-based sorbents, in which the kilogram-scale produced Al-promoted CaO-based sorbent powders were first moulded and subsequently crushed into the granules of target sizes. Three types of organic acids–acetic acid, citric acid and malonic acid were employed as peptizing agents to optimize the granulation process. As a result, the anti-attrition properties and compressive strength of the synthetic sorbents were elevated owing to the introduction of an appropriate amount of acetic or malonic acid, for it expedited the disintegration of the pseudo-boehmite (served as binder agent) particles into sol particles, which allowed for tighter bonding of sorbent particles. In addition, corncob powder acted as a pore-forming agent, enhancing the porous structure of the sorbent particles due to the gases released from the thermal decomposition of organic groups during calcination. Nevertheless, the results revealed that the porous and loose structure adversely affected the mechanical strength of the granules.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego Morlando , Vanja Buvik , Asmira Delic , Ardi Hartono , Hallvard F. Svendsen , Hanne M. Kvamsdal , Eirik F. da Silva , Hanna K. Knuutila
{"title":"Available data and knowledge gaps of the CESAR1 solvent system","authors":"Diego Morlando , Vanja Buvik , Asmira Delic , Ardi Hartono , Hallvard F. Svendsen , Hanne M. Kvamsdal , Eirik F. da Silva , Hanna K. Knuutila","doi":"10.1016/j.ccst.2024.100290","DOIUrl":"10.1016/j.ccst.2024.100290","url":null,"abstract":"<div><div>Amine-based chemical absorption stands out as the leading technology for post-combustion CO<sub>2</sub>-capture. A blend of 3 M 2-amino-2-methyl-1-propanol (AMP) and 1.5 M piperazine (PZ), also known as CESAR1, has proven to outperform the current benchmark ethanolamine (MEA), exhibiting better energy performance and lower degradation rates. This review aims to gather all the experimental laboratory and pilot available data for CESAR1 and its constituent components. Experimental gaps to develop reliable process models are detected and future experiments are proposed. An overview of the knowledge related to amine and degradation compound emissions and environmental impacts of CESAR1, together with hands-on experience in operating the solvent, is presented in this review.</div><div>The main findings of the review are that sufficient physical properties, N<sub>2</sub>O-solubility, and speciation data for the CESAR1 solvent are not available in the open literature, even though necessary for the development of reliable process models. A review of the degradation compounds for AMP, PZ and AMP/PZ blends outlines that the nitrogen balance for AMP and PZ is not closed, meaning that there still are compounds that need identification and quantification in the degraded solvent. Given the higher volatility of AMP compared to MEA, a better understanding of the formation and behaviour of aerosol and gas phase emissions is required. A review of pilot plant campaigns for AMP/PZ blends shows that CESAR1 performs better in terms of energy compared to MEA and degrades less. There is, however, the need for high-quality pilot campaigns where all data needed for process model validation is provided for the scientific community. Finally, amine emission mitigation strategies and data on the environmental impact and toxicity of AMP and PZ are presented and discussed.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iltaf Khan , Samreen Sadiq , Ping Wu , Muhammad Humayun , Sami Ullah , Waleed Yaseen , Sikandar Khan , Abbas Khan , Rasha A. Abumousa , Mohamed Bououdina
{"title":"Synergizing black gold and light: A comprehensive analysis of biochar-photocatalysis integration for green remediation","authors":"Iltaf Khan , Samreen Sadiq , Ping Wu , Muhammad Humayun , Sami Ullah , Waleed Yaseen , Sikandar Khan , Abbas Khan , Rasha A. Abumousa , Mohamed Bououdina","doi":"10.1016/j.ccst.2024.100315","DOIUrl":"10.1016/j.ccst.2024.100315","url":null,"abstract":"<div><div>Biochar is a porous, high-surface-area, black carbon-rich product that offers a cost-effective and environmentally friendly option to replace conventional charcoal. However, its specific structure and limited biodegradability pose challenges for its widespread applications. Photocatalysis is suggested as an alternative approach to harness solar energy and transform it into solar fuels. Interestingly, nanomaterials-based photocatalysts with tailored energy band properties and non-toxic characteristics, high surface areas, enhanced stability, and tunable pore sizes, have gained attention for their potential in diverse applications. Therefore, existing research on biochar-based photocatalysis systems (BBPs) aims to address different environmental issues. Interestingly, BBPs offer benefits such as excellent electrical conductivity, versatile functional groups, large surface area, and multiple surface-active sites, promoting high charge mobility, electron reservoir, superior charge separation, and small bandgap. This review provides a comprehensive overview of BBPs developments, including synthesis methods and properties. The fusion of BBPs is used in CO<sub>2</sub> conversion, photocatalytic H<sub>2</sub> generation, CO<sub>2</sub> reduction, pollutants, dyes, and pharmaceutical degradation. Although the intermarriage of BBPs has potential benefits, their effectiveness may be compromised when modified photocatalysts are incorporated, which may negatively influence carrier generation efficiency and overall performance. Therefore, there is empty room for further research on their physical properties, effectiveness, long-term stability, and reusability of BBPs.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yizhong Duan , Yang Liu , Haonan Liu , Zhan Shi , Xinran Shen , Xiantong Sun , Shixin Zhao , Shuiping Yan , Feihong Liang
{"title":"CO2 absorption performance of biogas slurry enhanced by biochar as a potential solvent in once-through CO2 chemical absorption process","authors":"Yizhong Duan , Yang Liu , Haonan Liu , Zhan Shi , Xinran Shen , Xiantong Sun , Shixin Zhao , Shuiping Yan , Feihong Liang","doi":"10.1016/j.ccst.2024.100317","DOIUrl":"10.1016/j.ccst.2024.100317","url":null,"abstract":"<div><div>Carbon capture, utilization, and storage (CCUS), offers a promising avenue for mitigating CO<sub>2</sub> emissions, in which the big challenge is the high CO<sub>2</sub> capture cost. A novel CCUS technology called once-through CO<sub>2</sub> chemical absorption using biogas slurry, could potentially reduce the CO<sub>2</sub> capture cost through decreasing the energy consumption greatly during CO<sub>2</sub> capture. This technology, however, is constrained by the CO<sub>2</sub> absorption capacity of biogas slurry. To enhance the CO<sub>2</sub> capture capacity of this innovative technology, we proposed a method to enhance CO<sub>2</sub> absorption by integrating biochar into biogas slurry. Results indicated that the CO<sub>2</sub> absorption capacity of biogas slurry improved by biochar varied with the type of biochar adopted. Among all the investigated biochar, the wood biochar like sea buckthorn and sand willow exhibited the lowest CO<sub>2</sub> capture enhancement, with 0.82±0.19 mmol/g and 0.81±0.30 mmol/g, respectively. Biochar from C4 plants like corn stalks and cobs demonstrated the highest enhancement, with 2.11±0.24 mmol/g and 2.47±0.86 mmol/g, respectively. The enhancement driven by C3 plant biochar like millet stalks and shells was intermediate, with 1.62±0.47 mmol/g and 1.62±0.46 mmol/g, respectively. The primary factor for promoting CO<sub>2</sub> absorption in the biochar-based biogas slurry was the increase in pH of biogas slurry. The total pore volume of biochar was the principal material property that enhanced CO<sub>2</sub> absorption, followed by the EC and BET surface areas of biochar. Increasing the carbonization temperature of biochar could also enhance the CO<sub>2</sub> absorption capacity by biogas slurry. In CO<sub>2</sub>-rich biochar-based biogas slurry, CO<sub>2</sub> primarily existed as HCO<sub>3</sub><sup>−</sup> and carbamate. However, for the influence of the biochar's pore structure, CO<sub>2</sub> in the CO<sub>2</sub>-rich biochar-based biogas slurry was more stable than that in CO<sub>2</sub>-rich biogas slurry.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyad M. Ghazi , Dina Ewis , Hazim Qiblawey , Muftah H. El-Naas
{"title":"CO2 electrochemical reduction to formic acid: An overview of process sustainability","authors":"Zeyad M. Ghazi , Dina Ewis , Hazim Qiblawey , Muftah H. El-Naas","doi":"10.1016/j.ccst.2024.100308","DOIUrl":"10.1016/j.ccst.2024.100308","url":null,"abstract":"<div><div>CO<sub>2</sub> Electrochemical Reduction (CO<sub>2</sub> ECR) is a promising technology that converts CO<sub>2</sub> into value-added products, including formic acid, ethanol, and methanol, by applying external voltage. This technology is not only considered a CO<sub>2</sub> mitigation process but a process that produces value-added chemicals reducing dependence on fossil fuels. This review assesses the sustainability of the CO<sub>2</sub> ECR process by focusing on life cycle assessment and techno-economic evaluation studies. Recent advances in catalysts and cell structures for CO<sub>2</sub> ECR are also discussed from a sustainability perspective. Furthermore, the integration of CO<sub>2</sub> ECR with renewable resources as a power source is highlighted. The review aims to determine the sustainability of CO<sub>2</sub> conversion for formic acid production and to provide guidelines for future advancements. Research gaps and challenges are also provided.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvatore F. Cannone , Michel Tawil , Sergio Bocchini , Massimo Santarelli
{"title":"Biobased ionic liquid solutions for an efficient post-combustion CO2 capture system","authors":"Salvatore F. Cannone , Michel Tawil , Sergio Bocchini , Massimo Santarelli","doi":"10.1016/j.ccst.2024.100312","DOIUrl":"10.1016/j.ccst.2024.100312","url":null,"abstract":"<div><div>This study explores the use of ionic liquids (ILs) as a novel and efficient alternative to conventional monoethanolamine (MEA) for CO<sub>2</sub> capture. While MEA scrubbing is well-known for carbon sequestration, it faces limitations such as high energy consumption, toxicity, and rapid degradation. In contrast, ILs offer advantages such as non-volatility, stability, and reduced corrosiveness. We focus on a biodegradable IL comprising choline ([Cho]) and proline ([Pro]) amino acids to create an eco-friendly solution. Dimethyl sulfoxide (DMSO) is introduced as a diluent to mitigate viscosity issues during CO<sub>2</sub> uptake. Our research measures the thermo-physical properties, including density and viscosity of [Cho][Pro] in DMSO at different concentrations. The addition of DMSO resulted in a viscosity reduction of >97 % at a temperature of 303 K for the three virgin solutions compared to the pure IL. In addition, the CO<sub>2</sub> capture performance was evaluated using a system of absorption and desorption reactors. The results show that the 25 % wt [Cho][Pro] solution excels, achieving over 90 % CO<sub>2</sub> absorption, 0.66 <span><math><mrow><mi>m</mi><mi>o</mi><msub><mi>l</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub><mo>/</mo><mi>m</mi><mi>o</mi><msub><mi>l</mi><mrow><mi>I</mi><mi>L</mi></mrow></msub></mrow></math></span> in the first cycle, and demonstrating high reusability and regeneration efficiency over multiple cycles. Comparisons indicate that the IL solution outperforms traditional aqueous MEA solutions. Longer term testing confirms the solution's stability and minimal degradation, achieving a regeneration efficiency of >55 % over 30 cycles, suggesting the potential of [Cho][Pro] for sustainable long-term CO<sub>2</sub> capture applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}