{"title":"Carbon capture, utilization, and storage for sustainable construction: Insights into CO2 mixing, curing, and mineralization","authors":"Kamran Aghaee","doi":"10.1016/j.ccst.2025.100503","DOIUrl":null,"url":null,"abstract":"<div><div>Given the substantial share of global CO<sub>2</sub> emissions attributable to construction materials, especially cement, there is rising interest in harnessing CO<sub>2</sub> to enhance cementitious composites and generate value‑added products. Strategic carbon capture, utilization, and storage (CCUS) techniques including CO<sub>2</sub> mixing, curing, and mineralization can improve the macro‑mechanical performance and microstructure of cement‑based materials and enable the development of novel binders and construction materials. This article synthesizes current CCUS techniques applicable to construction materials, particularly concrete composites, and elaborates on key parameters affecting their effectiveness. The findings suggest that CO<sub>2</sub> mineralization is more effective than CO<sub>2</sub> mixing and curing, revealing its considerable potential for producing carbon-sink materials from construction and industrial by-products that support circularity through reuse and closing the loop in construction. However, this approach still faces challenges related to scale-up and economic feasibility. This study compares and identifies the optimal implementation conditions to maximize material performance and production efficiency, while also evaluating the economic and environmental impacts of the technologies, with a focus on advancing circularity in construction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"17 ","pages":"Article 100503"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277265682500140X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given the substantial share of global CO2 emissions attributable to construction materials, especially cement, there is rising interest in harnessing CO2 to enhance cementitious composites and generate value‑added products. Strategic carbon capture, utilization, and storage (CCUS) techniques including CO2 mixing, curing, and mineralization can improve the macro‑mechanical performance and microstructure of cement‑based materials and enable the development of novel binders and construction materials. This article synthesizes current CCUS techniques applicable to construction materials, particularly concrete composites, and elaborates on key parameters affecting their effectiveness. The findings suggest that CO2 mineralization is more effective than CO2 mixing and curing, revealing its considerable potential for producing carbon-sink materials from construction and industrial by-products that support circularity through reuse and closing the loop in construction. However, this approach still faces challenges related to scale-up and economic feasibility. This study compares and identifies the optimal implementation conditions to maximize material performance and production efficiency, while also evaluating the economic and environmental impacts of the technologies, with a focus on advancing circularity in construction.