Carbon Capture Science & Technology最新文献

筛选
英文 中文
Developing non-aqueous slurry for CO2 capture
Carbon Capture Science & Technology Pub Date : 2025-02-10 DOI: 10.1016/j.ccst.2025.100385
Sahar Foorginezhad, Xiaoyan Ji
{"title":"Developing non-aqueous slurry for CO2 capture","authors":"Sahar Foorginezhad,&nbsp;Xiaoyan Ji","doi":"10.1016/j.ccst.2025.100385","DOIUrl":"10.1016/j.ccst.2025.100385","url":null,"abstract":"<div><div>The urgency of mitigating CO<sub>2</sub> emissions has become increasingly critical due to their detrimental effects on environmental sustainability and human health. Among emerging solutions, deep eutectic solvents (DESs) have garnered attention for their high CO<sub>2</sub> capture capacities. However, widespread application of DESs has been constrained by their inherent high viscosity and cost. To overcome these limitations, this study further explores the novel strategy, where cosolvent addition and immobilization are combined to develop a non-aqueous slurry for CO<sub>2</sub> capture with high efficiency. Here, [MEACl][EDA] with (1:5) molar ratio is mixed with ethylene glycol (EG) to form a non-aqueous DES solution, and the DES is further immobilized into the mesoporous silica to form a composite and then mixed with the DES-EG solution to make a slurry. The CO<sub>2</sub> capture tests demonstrated 15 wt.% capture capacity at 22 °C and 1 bar, and efficient sorption and desorption rates (0.34 and 0.38 mol CO<sub>2</sub>/(kg sorbent·min) within the initial 2 min). The slurry also exhibited promising cyclic performance with 96.4 % recovery together with minimal solvent loss of 0.97 % and almost intact structure after 120 hr of heating at 110 °C. The improved capture capacity and kinetics, especially for desorption, as well as enhanced thermal stability of the non-aqueous system highlight its potential for industrial applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100385"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143376987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
Carbon Capture Science & Technology Pub Date : 2025-02-05 DOI: 10.1016/j.ccst.2025.100384
Yucong Ge , Zeyu Wang , Li Yang , Xunxuan Heng , Zhenzhen Zhang , Yi Wang , Fang Liu , Xiao Yang , Bo Liu , Kunlei Liu
{"title":"CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics","authors":"Yucong Ge ,&nbsp;Zeyu Wang ,&nbsp;Li Yang ,&nbsp;Xunxuan Heng ,&nbsp;Zhenzhen Zhang ,&nbsp;Yi Wang ,&nbsp;Fang Liu ,&nbsp;Xiao Yang ,&nbsp;Bo Liu ,&nbsp;Kunlei Liu","doi":"10.1016/j.ccst.2025.100384","DOIUrl":"10.1016/j.ccst.2025.100384","url":null,"abstract":"<div><div>Efficient and sustainable CO<sub>2</sub> capture technologies are key to addressing global climate change; however, existing amine-based absorbents still have limitations in terms of reaction efficiency and energy consumption. This study investigates the modification of amine-based absorbents, including monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA), using the surfactant Fatty Alcohol Polyoxyethylene Ether-9 (AEO-9). The CO<sub>2</sub> capture performance, product accumulation, and molecular interaction mechanisms were systematically examined. The results show that the inclusion of AEO-9 reduces the surface tension of the absorbent by 41.4 %–49.1 %, enhancing the foaming properties and improving CO<sub>2</sub> removal efficiency by 22.3 %–41.5 %. Additionally, the absorption performance of some rate-amine blends after foaming is better than pure MEA, suggesting their potential to reduce energy consumption and mitigate equipment corrosion. <sup>13</sup>C NMR and FTIR characterization confirmed the formation and accumulation of reaction products. Molecular dynamics simulations further revealed that the surfactant enhances molecular cooperation by optimizing the density and dynamic characteristics of the solvation shell. Meanwhile, the modified system showed increased hydrogen bond length and bond angle, weakening network rigidity and improving intermolecular mobility. This study demonstrates the potential of foaming absorbents in CO<sub>2</sub> capture and introduces a novel approach to enhancing absorbent performance through interfacial regulation and microstructural optimization, providing important theoretical and practical insights for the development of efficient, low-energy carbon capture technologies.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100384"},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity
Carbon Capture Science & Technology Pub Date : 2025-02-01 DOI: 10.1016/j.ccst.2025.100377
Xiaoke Chen , Ming Cai , Pengwei Huo , Yan Yan , Yue Zhang , Pengxin Li , Zhi Zhu
{"title":"Sulfur-vulcanized CoFe2O4 with high-efficiency photo-to-thermal conversion for enhanced CO2 reduction and mechanistic insights into selectivity","authors":"Xiaoke Chen ,&nbsp;Ming Cai ,&nbsp;Pengwei Huo ,&nbsp;Yan Yan ,&nbsp;Yue Zhang ,&nbsp;Pengxin Li ,&nbsp;Zhi Zhu","doi":"10.1016/j.ccst.2025.100377","DOIUrl":"10.1016/j.ccst.2025.100377","url":null,"abstract":"<div><div>Semiconductor photocatalysts often exhibit low CO<sub>2</sub> reduction activity due to inherent limitations. Photothermal (PTT) processes have emerged as crucial for enhancing this activity, yet investigations in this area remain sparse. This study introduces a novel CoFe<sub>2</sub>O<sub>3.5</sub>S<sub>0.5</sub> photothermal catalyst, synthesized via hydrothermal methods with particle sizes ranging from 5 to 10 nm. Comparative analysis reveals that the CO yield from the as-prepared catalyst surpasses that of CoFe<sub>2</sub>O<sub>4</sub> by 8.9 times, achieving 100% selectivity. The integration of sulfur significantly boosts near-infrared light absorption and promotes the conversion of light to thermal energy, enabling the catalyst to reach 185 °C within 300 ss. This rapid temperature escalation facilitates the swift separation of charge carriers. Additionally, the adsorption of CO<sub>2</sub> and the dynamics of surface intermediates were thoroughly examined using <em>in situ</em> FTIR spectroscopy and theoretical models, identifying COOH* as the pivotal intermediate and the bottleneck in the reaction pathway. Our findings rectify gaps in prior studies and offer a foundational reference for further exploration of product selectivity in the photocatalytic reduction of CO<sub>2</sub>.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100377"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technical, economic and lifecycle greenhouse gas emissions analyses of solid sorbent direct air capture technologies
Carbon Capture Science & Technology Pub Date : 2025-01-31 DOI: 10.1016/j.ccst.2025.100380
Sylvanus Lilonfe , Sarah Rodgers , Amir F.N. Abdul-Manan , Ioanna Dimitriou , Jon McKechnie
{"title":"Technical, economic and lifecycle greenhouse gas emissions analyses of solid sorbent direct air capture technologies","authors":"Sylvanus Lilonfe ,&nbsp;Sarah Rodgers ,&nbsp;Amir F.N. Abdul-Manan ,&nbsp;Ioanna Dimitriou ,&nbsp;Jon McKechnie","doi":"10.1016/j.ccst.2025.100380","DOIUrl":"10.1016/j.ccst.2025.100380","url":null,"abstract":"<div><div>Achieving net zero emissions by 2050 will require the development of cost-effective and CO<sub>2</sub>-efficient direct air capture (DAC) technology to remove atmospheric CO<sub>2</sub>. This study presents a comprehensive assessment of five solid sorbents under different technology scenarios to determine the design, operations, cost and greenhouse gas (GHG) emissions of DAC technologies. The cost and GHG emissions of the five solid sorbents ranged from $<sub>2024</sub>1,200–40,400/t sorbent and 3.1–12.3 tCO<sub>2</sub>e/t sorbent in 2024, respectively, mainly driven by the raw materials used for sorbent manufacture. Cost estimates for the best capture technologies ranged from $<sub>2024</sub>97–168/gross tCO<sub>2</sub> captured [$<sub>2024</sub>126–170/net tCO<sub>2</sub> captured] in 2025 and can be further reduced to $<sub>2024</sub>87–140/gross tCO<sub>2</sub> captured [$<sub>2024</sub>93–142/net tCO<sub>2</sub> captured] in 2050. The costs of DAC are heavily influenced by: (i) economic factors (i.e. capital expenses and energy costs), (ii) design elements (i.e. plant scale) and (iii) technical parameters (i.e. sorbent's adsorption rate and time). Conversely, the GHG emissions of DAC are mostly determined by the source of energy. Price signals in existing carbon markets are inadequate to support a DAC project, but a forecasted carbon price increase to $140–240/tCO<sub>2</sub> by 2030–2050 could make DAC commercially viable.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100380"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the effect of selective adsorption of CO2 by C@Fe3O4 for H2 purification
Carbon Capture Science & Technology Pub Date : 2025-01-31 DOI: 10.1016/j.ccst.2025.100383
Longlong Lei , Hang Yuan , Hongguang Zhu , Jie Ma , Fanghui Pan , Fulu Lu
{"title":"Research on the effect of selective adsorption of CO2 by C@Fe3O4 for H2 purification","authors":"Longlong Lei ,&nbsp;Hang Yuan ,&nbsp;Hongguang Zhu ,&nbsp;Jie Ma ,&nbsp;Fanghui Pan ,&nbsp;Fulu Lu","doi":"10.1016/j.ccst.2025.100383","DOIUrl":"10.1016/j.ccst.2025.100383","url":null,"abstract":"<div><div>In the context of global efforts to address climate change, capturing and storing CO<sub>2</sub>, as well as developing hydrogen energy, have emerged as widely recognized effective methods for reducing greenhouse gas emissions. In particular, the process of hydrogen production through the gasification and reforming of organic fuels necessitates the separation and purification of H<sub>2</sub> from CO<sub>2</sub>. Although various technological pathways have been proposed in this research field, issues such as low separation efficiency, high energy consumption, and high costs are prevalent to varying degrees across these different methods. This study is based on reports of the strong interaction between ferric oxide (Fe<sub>3</sub>O<sub>4</sub>) and CO<sub>2</sub>, as well as the magnetic exclusion of hydrogen gas. This study hypothesize carbon-coated magnetite (C@Fe<sub>3</sub>O<sub>4</sub>) as a material with selective adsorption of CO<sub>2</sub>, enabling efficient separation of H<sub>2</sub> and CO<sub>2</sub>. To test this hypothesis, this study synthesized C@Fe<sub>3</sub>O<sub>4</sub> and conducted isothermal adsorption tests to determine the adsorption curves for H<sub>2</sub> and CO<sub>2</sub>, along with calculations for adsorption selectivity. The results indicated that C@Fe<sub>3</sub>O<sub>4</sub> exhibited good selectivity for CO<sub>2</sub> over H<sub>2</sub> under ambient conditions. Penetration experiments further confirmed that the separation ratio for H<sub>2</sub> and CO<sub>2</sub> reached as high as 13.6. Comparative experiments with porous carbon materials lacking the Fe<sub>3</sub>O<sub>4</sub> core, along with characterization analyses of C@Fe<sub>3</sub>O<sub>4</sub>, validated the dual mechanism at play: the strong adsorption of CO<sub>2</sub> by the Fe<sub>3</sub>O<sub>4</sub> core and the magnetic exclusion of hydrogen. The carbon coating did not inhibit the strong adsorption of CO<sub>2</sub> by Fe<sub>3</sub>O<sub>4</sub> but also provided a barrier that prevented direct contact between H<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>, mitigating any potential reduction reactions that could lead to magnetic decay. Moreover, the petal-like carbon-coated structure increased the volumetric CO<sub>2</sub> adsorption capacity of the material. Although the high density of the Fe<sub>3</sub>O<sub>4</sub> crystalline core resulted in modest mass adsorption capacity, the unique layered carbon structure enhanced the specific surface area. This dual effect led to a volumetric CO<sub>2</sub> adsorption capacity of 1.32 mmol/cm³, surpassing that of most existing porous carbon materials, and the CO<sub>2</sub>/H<sub>2</sub> adsorption ratio also exceeded that of many carbon materials.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100383"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-assisted development of gas separation membranes: A review
Carbon Capture Science & Technology Pub Date : 2025-01-30 DOI: 10.1016/j.ccst.2025.100374
An Li, Jianchun Chu, Shaoxuan Huang, Yongqi Liu, Maogang He, Xiangyang Liu
{"title":"Machine learning-assisted development of gas separation membranes: A review","authors":"An Li,&nbsp;Jianchun Chu,&nbsp;Shaoxuan Huang,&nbsp;Yongqi Liu,&nbsp;Maogang He,&nbsp;Xiangyang Liu","doi":"10.1016/j.ccst.2025.100374","DOIUrl":"10.1016/j.ccst.2025.100374","url":null,"abstract":"<div><div>Gas separation membranes have been a hot topic of research in recent decades due to their low costs, high energy efficiency and wide range of applications. Machine learning provide a fast way to design gas separation membranes with required performance. This review systematically describes the process of machine learning-assisted gas separation membrane development. In addition, the experimental data on CO<sub>2</sub>/CH<sub>4</sub>, CO<sub>2</sub>/N<sub>2</sub> and O<sub>2</sub>/N<sub>2</sub> separation performance were summarized to provide basis for future work on machine learning-assisted design of gas separation membrane for carbon dioxide capture, and natural gas purification as well as oxygen or nitrogen enrichment. Moreover, we discuss the classical materials that make up gas separation membranes, including MOFs, polymers and COFs, and analyze the strengths and weaknesses of the different materials. Finally, we discuss the challenges in the development of machine learning method for next-generation gas separation membranes.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100374"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143100121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation strategy and effect of metal-support interaction over catalysts for carbon dioxide methanation
Carbon Capture Science & Technology Pub Date : 2025-01-29 DOI: 10.1016/j.ccst.2025.100381
Shuaishuai Lyu , Dejian Zhao , Hao Zhang , Hongwei Li , Fuli Wen , Qiuming Zhou , Rongjun Zhang , Yu Wu , Chaopeng Hou , Guofu Xia , Run Xu , Xingang Li
{"title":"Modulation strategy and effect of metal-support interaction over catalysts for carbon dioxide methanation","authors":"Shuaishuai Lyu ,&nbsp;Dejian Zhao ,&nbsp;Hao Zhang ,&nbsp;Hongwei Li ,&nbsp;Fuli Wen ,&nbsp;Qiuming Zhou ,&nbsp;Rongjun Zhang ,&nbsp;Yu Wu ,&nbsp;Chaopeng Hou ,&nbsp;Guofu Xia ,&nbsp;Run Xu ,&nbsp;Xingang Li","doi":"10.1016/j.ccst.2025.100381","DOIUrl":"10.1016/j.ccst.2025.100381","url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) methanation is an essential technology for addressing global challenges such as sustainable energy storage, space exploration, and the reduction of CO<sub>2</sub> emission. This technology has attracted broad attention in recent years. To really implement the CO<sub>2</sub> methanation process, it is crucial to design stable and highly effective catalysts. The activity and selectivity of heterogeneous catalysts can be efficiently tuned by controlling the metal-support interaction, and this strategy has been widely used in the catalyst design for CO<sub>2</sub> methanation. In fact, the catalytic activity can be enhanced by up to ∼25 times in a CO<sub>2</sub> methanation catalyst due to metal-support interaction. In this review, we summarize the recent progress on metal-support interaction in heterogeneous catalysts for CO<sub>2</sub> methanation. At first, we will systemically discuss the effect of metal-support interaction in CO<sub>2</sub> methanation catalysts, followed by a detailed introduction to its modulation strategy. Through quantitative analysis, we will point out changing chemical composition of catalyst support is the most efficient method to enhance the catalytic performance, and the primary goal of catalyst design is the modulation of electron transfer between metal particles and the support. We will also sketch the potential research direction of this promising field.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100381"},"PeriodicalIF":0.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrolysis-catalytic gasification of plastic waste for hydrogen-rich syngas production with hybrid-functional Ni-CaOCa2SiO4 catalyst
Carbon Capture Science & Technology Pub Date : 2025-01-29 DOI: 10.1016/j.ccst.2025.100382
Tian Heng Qin , Guozhao Ji , Boyu Qu , Alan J McCue , Shaoliang Guan , Jos Derksen , Ye Shui Zhang
{"title":"Pyrolysis-catalytic gasification of plastic waste for hydrogen-rich syngas production with hybrid-functional Ni-CaOCa2SiO4 catalyst","authors":"Tian Heng Qin ,&nbsp;Guozhao Ji ,&nbsp;Boyu Qu ,&nbsp;Alan J McCue ,&nbsp;Shaoliang Guan ,&nbsp;Jos Derksen ,&nbsp;Ye Shui Zhang","doi":"10.1016/j.ccst.2025.100382","DOIUrl":"10.1016/j.ccst.2025.100382","url":null,"abstract":"<div><div>The production of H<sub>2</sub>-rich syngas from pyrolysis-catalytic gasification of plastic waste bottles has been investigated. The hybrid-functional materials consisting of Ni as catalyst, CaO as CO<sub>2</sub> sorbent and Ca<sub>2</sub>SiO<sub>4</sub> as a polymorphic active spacer were synthesized. The different parameters (Ni loading, temperature, N<sub>2</sub> flow rate and feedstock-to-catalyst ratio) have been investigated to optimise the H<sub>2</sub> production. The catalysts were analysed by N<sub>2</sub> physisorption, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Temperature-programmed reduction (TPR) and <em>in-situ</em> Transmission Electron Microscopy (TEM). Temperature-programmed oxidation (TPO) was used to analyse the carbon formation on the used catalysts. The highest H<sub>2</sub> production of 59.15 mmol g<sup>-1</sup><sub>of plastic</sub> was obtained in the presence of a catalyst with 20 wt.% Ni loading, which amounts to H<sub>2</sub> purity as high as 54.2 vol% in gas production. Furthermore, 90.63 mmol g<sup>-1</sup><sub>of plastic</sub> of syngas was produced by increasing the feedstock-to-catalyst ratio to 4:1, yielding 84.4 vol.% of total gas product (53.1 vol.% of H<sub>2</sub> and 31.3 vol.% of CO, respectively). The Ni-CaO<img>Ca<sub>2</sub>SiO<sub>4</sub> hybrid-functional material is a very promising catalyst in the pyrolysis-catalytic gasification process by capturing CO<sub>2</sub> as it is produced, therefore shifting the water gas shift (WGS) reaction to enhance H<sub>2</sub> production from plastic waste. Detailed elucidation of the roles of each component at the microscale during the catalytic process was also provided through <em>in-situ</em> TEM analysis. The finding could guide the industry for future large-scale application to convert abundant plastic waste into H<sub>2</sub>-rich syngas, therefore contributing to the global ‘net zero’ ambition.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100382"},"PeriodicalIF":0.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon-resistant bifunctional catalyst composed of LaFeO3 enhanced Ni-CaO for integrated CO2 capture and conversion
Carbon Capture Science & Technology Pub Date : 2025-01-28 DOI: 10.1016/j.ccst.2024.100358
Hengyu Wei , Min Lin , Juping Zhang , Di Gao , Yuhao Chen , Liang Zhang , Xing Zhu
{"title":"Carbon-resistant bifunctional catalyst composed of LaFeO3 enhanced Ni-CaO for integrated CO2 capture and conversion","authors":"Hengyu Wei ,&nbsp;Min Lin ,&nbsp;Juping Zhang ,&nbsp;Di Gao ,&nbsp;Yuhao Chen ,&nbsp;Liang Zhang ,&nbsp;Xing Zhu","doi":"10.1016/j.ccst.2024.100358","DOIUrl":"10.1016/j.ccst.2024.100358","url":null,"abstract":"<div><div>Coupled calcium cycling and dry reforming of methane (CaL-DRM) process has garnered significant attention in recent years as a promising technique for the CO<sub>2</sub> capture and <em>in-situ</em> conversion. However, traditional Ni-CaO catalysts with substantial CaL-DRM activity are susceptible to severe carbon deposition, which greatly hinders their industrial application. A combination of sol-gel and impregnation methods to include LaFeO<sub>3</sub> into Ni-CaO to enhance CO<sub>2</sub> capture and conversion is utilized. The characterization results indicate that the incorporation of LaFeO<sub>3</sub> significantly improves the dispersion of Ni and CaO, increases the concentration of oxygen vacancies, effectively suppresses the sintering and carbon deposition, and improves the cycling stability of Ni-CaO. In addition, LaFeO<sub>3</sub> promotes the outward diffusion of lattice oxygen, thereby facilitating CO<sub>2</sub> capture and CH<sub>4</sub> conversion to syngas. At 700 ℃, up to 86.5 % CO<sub>2</sub> conversion, 87.6 % CO selectivity, and syngas yield close to the theoretical value of 1.0 were achieved over 5Ni-30CaO-LFO (30 wt% CaO). More importantly, the activity of catalyst remains almost unchanged after 30 cycles. This study introduces an innovative approach for CaL-DRM, showing significant potential for effective and stable CO<sub>2</sub> capture and <em>in-situ</em> conversion.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100358"},"PeriodicalIF":0.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decarbonizing Saudi Arabia energy and industrial sectors: Assessment of carbon capture cost
Carbon Capture Science & Technology Pub Date : 2025-01-27 DOI: 10.1016/j.ccst.2025.100375
Feras Rowaihy , Ali Hamieh , Naser Odeh , Mohamad Hejazi , Mohammed Al-Juaied , Abdulkader M. Afifi , Hussein Hoteit
{"title":"Decarbonizing Saudi Arabia energy and industrial sectors: Assessment of carbon capture cost","authors":"Feras Rowaihy ,&nbsp;Ali Hamieh ,&nbsp;Naser Odeh ,&nbsp;Mohamad Hejazi ,&nbsp;Mohammed Al-Juaied ,&nbsp;Abdulkader M. Afifi ,&nbsp;Hussein Hoteit","doi":"10.1016/j.ccst.2025.100375","DOIUrl":"10.1016/j.ccst.2025.100375","url":null,"abstract":"<div><div>The global drive for net-zero emissions has highlighted carbon capture, utilization, and storage (CCUS) as a critical tool to reduce CO₂ emissions from energy and industrial sectors. Achieving climate goals necessitates a comprehensive understanding of regional CO₂ emission profiles and capture costs to inform effective decarbonization strategies. As one of the largest CO₂ emitters globally, Saudi Arabia has committed to achieving net-zero emissions by 2060. However, the economic implications of deploying CCUS within the Kingdom remain insufficiently explored. This work provides updated estimates of CO₂ emissions across key sectors in Saudi Arabia, including electricity, petrochemicals, refineries, cement, steel, ammonia production, and desalination, based on 2022 data. The CO<sub>2</sub> capture costs are estimated by incorporating stationary emission plant data with reference cases from analogous industrial sectors, including capital expenditure (CAPEX) and operating expenditure (OPEX). The total capture cost per ton of CO<sub>2</sub> is determined by combining these cost components using an established economic model and a custom-developed tool. The study constructs a comprehensive CO₂ capture cost curve for Saudi Arabia, highlighting the variability of capture costs across regions and industries. Our analysis indicates an average CO₂ capture cost of $69/tCO₂, with substantial variability across industries. Ammonia production emerges as the most cost-efficient at $11/tCO₂, driven by its high CO₂ concentration, whereas smaller-scale operations can incur costs up to $189/tCO₂. Results show that economies of scale and CO₂ concentration play pivotal roles in determining capture feasibility, with low-cost opportunities identified in ammonia production and high-emission industrial clusters, particularly in the Eastern and Western regions. The Eastern region, with its planned CCS hub in Jubail, emerges as the most promising for near-term deployment. In contrast, the Western region requires additional focus on storage alternatives such as mineralization. Benchmarking against global capture costs reveals that Saudi Arabia's industrial landscape, characterized by large-scale emitters, is well-positioned for cost-effective CCUS implementation. The study highlights the need to prioritize low-cost capture opportunities and develop strategies tailored to regional and sector-specific conditions, offering a roadmap for the Kingdom's significant contribution to global net-zero ambitions.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"14 ","pages":"Article 100375"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143157457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信