从矿物中提取的双功能催化剂具有成本效益和强大的二氧化碳捕获和转化

Wenqi Fan , Qian Wu , Liang Huang , Xinglei Zhao , Shipeng Ding , Qiang Wang , Ming Xue , Xingchun Li
{"title":"从矿物中提取的双功能催化剂具有成本效益和强大的二氧化碳捕获和转化","authors":"Wenqi Fan ,&nbsp;Qian Wu ,&nbsp;Liang Huang ,&nbsp;Xinglei Zhao ,&nbsp;Shipeng Ding ,&nbsp;Qiang Wang ,&nbsp;Ming Xue ,&nbsp;Xingchun Li","doi":"10.1016/j.ccst.2025.100483","DOIUrl":null,"url":null,"abstract":"<div><div>The development of cost-effective and efficient bifunctional materials is crucial for advancing integrated CO<sub>2</sub> capture and utilization (ICCU) technologies. Herein, we report the rational design of a cost-effective bifunctional composite, Ni nanoparticles dispersed on KNaTiO<sub>3</sub> (denoted as KR3) for CO<sub>2</sub> sorption and hydrogenation to CO. The KR3 derived from low-cost natural rutile sand was responsible for CO<sub>2</sub> sorption, while the uniformly dispersed nickel nanoparticles facilitated the transformation of sorbed CO<sub>2</sub> to CO. The formed bifunctional materials showed a CO<sub>2</sub> conversion of 76.7 % with near-perfect selectivity towards CO, and robust cyclic stability over 10 cycles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis revealed both the redox mechanism and formate reaction pathway existed in CO<sub>2</sub> hydrogenation to CO. The pelletized 10Ni/KR3 still exhibited decent CO<sub>2</sub> sorption capacity in the presence of O<sub>2</sub>, and 84 % retention of CO<sub>2</sub> conversion was achieved in the hydrogenation process. The bifunctional 10Ni/KR3 material, distinguished by its high CO<sub>2</sub> sorption capacity, superior conversion activity, and robust cyclic stability, not only provides crucial insights for advancing solid CO<sub>2</sub> sorbents for flue gas capture and conversion but also demonstrates significant potential for practical carbon mitigation.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100483"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifunctional catalysts derived from mineral ores for cost-effective and robust CO2 capture and conversion\",\"authors\":\"Wenqi Fan ,&nbsp;Qian Wu ,&nbsp;Liang Huang ,&nbsp;Xinglei Zhao ,&nbsp;Shipeng Ding ,&nbsp;Qiang Wang ,&nbsp;Ming Xue ,&nbsp;Xingchun Li\",\"doi\":\"10.1016/j.ccst.2025.100483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of cost-effective and efficient bifunctional materials is crucial for advancing integrated CO<sub>2</sub> capture and utilization (ICCU) technologies. Herein, we report the rational design of a cost-effective bifunctional composite, Ni nanoparticles dispersed on KNaTiO<sub>3</sub> (denoted as KR3) for CO<sub>2</sub> sorption and hydrogenation to CO. The KR3 derived from low-cost natural rutile sand was responsible for CO<sub>2</sub> sorption, while the uniformly dispersed nickel nanoparticles facilitated the transformation of sorbed CO<sub>2</sub> to CO. The formed bifunctional materials showed a CO<sub>2</sub> conversion of 76.7 % with near-perfect selectivity towards CO, and robust cyclic stability over 10 cycles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis revealed both the redox mechanism and formate reaction pathway existed in CO<sub>2</sub> hydrogenation to CO. The pelletized 10Ni/KR3 still exhibited decent CO<sub>2</sub> sorption capacity in the presence of O<sub>2</sub>, and 84 % retention of CO<sub>2</sub> conversion was achieved in the hydrogenation process. The bifunctional 10Ni/KR3 material, distinguished by its high CO<sub>2</sub> sorption capacity, superior conversion activity, and robust cyclic stability, not only provides crucial insights for advancing solid CO<sub>2</sub> sorbents for flue gas capture and conversion but also demonstrates significant potential for practical carbon mitigation.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100483\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发具有成本效益和效率的双功能材料对于推进二氧化碳综合捕集与利用(ICCU)技术至关重要。本文报道了一种低成本的双功能复合材料的合理设计,Ni纳米颗粒分散在KNaTiO3(表示为KR3)上吸附CO2并加氢成CO.从低成本的天然金红石砂中提取的KR3负责CO2的吸附,而均匀分散的镍纳米颗粒促进了吸附CO2向CO的转化。形成的双功能材料的CO2转化率为76.7%,对CO的选择性接近完美。并且在10个周期内具有很强的循环稳定性。漫反射红外傅立叶变换光谱(DRIFTS)分析表明,CO2加氢制CO过程中存在氧化还原机制和甲酸酯反应途径,在O2存在下,球团化的10Ni/KR3仍具有良好的CO2吸附能力,加氢过程中CO2转化率保持在84%。双功能10Ni/KR3材料以其高CO2吸附能力、卓越的转化活性和强大的循环稳定性而著称,不仅为推进用于烟气捕获和转化的固体CO2吸附剂提供了重要见解,而且还显示了实际碳减排的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifunctional catalysts derived from mineral ores for cost-effective and robust CO2 capture and conversion
The development of cost-effective and efficient bifunctional materials is crucial for advancing integrated CO2 capture and utilization (ICCU) technologies. Herein, we report the rational design of a cost-effective bifunctional composite, Ni nanoparticles dispersed on KNaTiO3 (denoted as KR3) for CO2 sorption and hydrogenation to CO. The KR3 derived from low-cost natural rutile sand was responsible for CO2 sorption, while the uniformly dispersed nickel nanoparticles facilitated the transformation of sorbed CO2 to CO. The formed bifunctional materials showed a CO2 conversion of 76.7 % with near-perfect selectivity towards CO, and robust cyclic stability over 10 cycles. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analysis revealed both the redox mechanism and formate reaction pathway existed in CO2 hydrogenation to CO. The pelletized 10Ni/KR3 still exhibited decent CO2 sorption capacity in the presence of O2, and 84 % retention of CO2 conversion was achieved in the hydrogenation process. The bifunctional 10Ni/KR3 material, distinguished by its high CO2 sorption capacity, superior conversion activity, and robust cyclic stability, not only provides crucial insights for advancing solid CO2 sorbents for flue gas capture and conversion but also demonstrates significant potential for practical carbon mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信