介质阻挡放电等离子体催化CO2转化:最新进展与展望

Longmei Li , Xiaohua Chen , Bella , Feiyang Hu , Xiaohua Zhang , Runping Ye , Lei Gong , Rongbin Zhang , Gang Feng , Sibudjing Kawi
{"title":"介质阻挡放电等离子体催化CO2转化:最新进展与展望","authors":"Longmei Li ,&nbsp;Xiaohua Chen ,&nbsp;Bella ,&nbsp;Feiyang Hu ,&nbsp;Xiaohua Zhang ,&nbsp;Runping Ye ,&nbsp;Lei Gong ,&nbsp;Rongbin Zhang ,&nbsp;Gang Feng ,&nbsp;Sibudjing Kawi","doi":"10.1016/j.ccst.2025.100485","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, dielectric barrier discharge (DBD) plasma-catalytic technology has emerged as a promising approach for CO<sub>2</sub> conversion due to its unique ability to activate inert molecules under mild conditions. This review systematically summarizes recent advances in DBD plasma-assisted catalytic processes for CO<sub>2</sub> utilization, focusing on four major technologies: CO<sub>2</sub> methanation, dry reforming of methane (DRM), CO<sub>2</sub> hydrogenation to methanol, and the reverse water-gas shift (RWGS) reaction. This review provides a comprehensive examination of DBD plasma-catalytic CO<sub>2</sub> conversion, with particular focus on process parameters, reaction mechanisms, and catalyst design strategies. The analysis highlights the crucial plasma-catalyst synergy, where non-equilibrium electron excitation from DBD plasma facilitates CO<sub>2</sub> dissociation while precisely engineered catalyst properties, including oxygen vacancies, tailor metal-support interactions, and direct the subsequent conversion pathways. These interdependent effects collectively determine their activity, selectivity, and stability. Additional emphasis is placed on plasma-assisted catalyst synthesis techniques and innovative approaches to mitigate carbon deposition, offering insights into the development of more efficient and durable catalytic systems for CO<sub>2</sub> conversion. This review affirms the technical viability and promising prospects of plasma-catalytic CO<sub>2</sub> conversion while acknowledging critical challenges in energy efficiency and product selectivity. To accelerate industrial translation, future research should focus on unraveling plasma-catalyst interactions through coupled in situ characterization and computational modeling, establishing fundamental structure-performance relationships under dynamic reaction conditions, and engineering scalable reactor systems that maintain catalytic integrity during continuous operation.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100485"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric barrier discharge plasma catalysis for CO2 conversion: Recent progress and perspectives\",\"authors\":\"Longmei Li ,&nbsp;Xiaohua Chen ,&nbsp;Bella ,&nbsp;Feiyang Hu ,&nbsp;Xiaohua Zhang ,&nbsp;Runping Ye ,&nbsp;Lei Gong ,&nbsp;Rongbin Zhang ,&nbsp;Gang Feng ,&nbsp;Sibudjing Kawi\",\"doi\":\"10.1016/j.ccst.2025.100485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, dielectric barrier discharge (DBD) plasma-catalytic technology has emerged as a promising approach for CO<sub>2</sub> conversion due to its unique ability to activate inert molecules under mild conditions. This review systematically summarizes recent advances in DBD plasma-assisted catalytic processes for CO<sub>2</sub> utilization, focusing on four major technologies: CO<sub>2</sub> methanation, dry reforming of methane (DRM), CO<sub>2</sub> hydrogenation to methanol, and the reverse water-gas shift (RWGS) reaction. This review provides a comprehensive examination of DBD plasma-catalytic CO<sub>2</sub> conversion, with particular focus on process parameters, reaction mechanisms, and catalyst design strategies. The analysis highlights the crucial plasma-catalyst synergy, where non-equilibrium electron excitation from DBD plasma facilitates CO<sub>2</sub> dissociation while precisely engineered catalyst properties, including oxygen vacancies, tailor metal-support interactions, and direct the subsequent conversion pathways. These interdependent effects collectively determine their activity, selectivity, and stability. Additional emphasis is placed on plasma-assisted catalyst synthesis techniques and innovative approaches to mitigate carbon deposition, offering insights into the development of more efficient and durable catalytic systems for CO<sub>2</sub> conversion. This review affirms the technical viability and promising prospects of plasma-catalytic CO<sub>2</sub> conversion while acknowledging critical challenges in energy efficiency and product selectivity. To accelerate industrial translation, future research should focus on unraveling plasma-catalyst interactions through coupled in situ characterization and computational modeling, establishing fundamental structure-performance relationships under dynamic reaction conditions, and engineering scalable reactor systems that maintain catalytic integrity during continuous operation.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,介质阻挡放电(DBD)等离子体催化技术因其在温和条件下激活惰性分子的独特能力而成为一种很有前途的CO2转化方法。本文系统综述了DBD等离子体催化CO2利用技术的最新进展,重点介绍了CO2甲烷化、甲烷干重整(DRM)、CO2加氢制甲醇和逆水气转换(RWGS)反应等4个主要技术。本文综述了DBD等离子体催化CO2转化的全面研究,重点介绍了工艺参数、反应机理和催化剂设计策略。该分析强调了等离子体-催化剂的关键协同作用,其中来自DBD等离子体的非平衡电子激发促进了CO2的解离,同时精确设计了催化剂性能,包括氧空位,定制金属支撑相互作用,并指导随后的转化途径。这些相互依存的效应共同决定了它们的活性、选择性和稳定性。额外的重点放在等离子体辅助催化剂合成技术和创新的方法来减轻碳沉积,为开发更有效和耐用的二氧化碳转化催化系统提供见解。这篇综述肯定了等离子体催化二氧化碳转化的技术可行性和前景,同时承认了能源效率和产品选择性方面的关键挑战。为了加速工业转化,未来的研究应侧重于通过耦合原位表征和计算建模来揭示等离子体-催化剂相互作用,建立动态反应条件下的基本结构-性能关系,以及设计可扩展的反应器系统,在连续运行中保持催化完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dielectric barrier discharge plasma catalysis for CO2 conversion: Recent progress and perspectives

Dielectric barrier discharge plasma catalysis for CO2 conversion: Recent progress and perspectives
In recent years, dielectric barrier discharge (DBD) plasma-catalytic technology has emerged as a promising approach for CO2 conversion due to its unique ability to activate inert molecules under mild conditions. This review systematically summarizes recent advances in DBD plasma-assisted catalytic processes for CO2 utilization, focusing on four major technologies: CO2 methanation, dry reforming of methane (DRM), CO2 hydrogenation to methanol, and the reverse water-gas shift (RWGS) reaction. This review provides a comprehensive examination of DBD plasma-catalytic CO2 conversion, with particular focus on process parameters, reaction mechanisms, and catalyst design strategies. The analysis highlights the crucial plasma-catalyst synergy, where non-equilibrium electron excitation from DBD plasma facilitates CO2 dissociation while precisely engineered catalyst properties, including oxygen vacancies, tailor metal-support interactions, and direct the subsequent conversion pathways. These interdependent effects collectively determine their activity, selectivity, and stability. Additional emphasis is placed on plasma-assisted catalyst synthesis techniques and innovative approaches to mitigate carbon deposition, offering insights into the development of more efficient and durable catalytic systems for CO2 conversion. This review affirms the technical viability and promising prospects of plasma-catalytic CO2 conversion while acknowledging critical challenges in energy efficiency and product selectivity. To accelerate industrial translation, future research should focus on unraveling plasma-catalyst interactions through coupled in situ characterization and computational modeling, establishing fundamental structure-performance relationships under dynamic reaction conditions, and engineering scalable reactor systems that maintain catalytic integrity during continuous operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信