Zengli Wang , Yaheng Pang , Xiao Wang , Hong Xu , Hongxia Guo , Li Liu , Haijun xu , Wenquan Cui , Xinying Liu
{"title":"research progress on the optimization of RWGS catalytic systems and reactors and the integrated technology of CO2 capture and conversion","authors":"Zengli Wang , Yaheng Pang , Xiao Wang , Hong Xu , Hongxia Guo , Li Liu , Haijun xu , Wenquan Cui , Xinying Liu","doi":"10.1016/j.ccst.2025.100476","DOIUrl":null,"url":null,"abstract":"<div><div>Global carbon emissions continue to rise, and carbon capture and utilization technologies have become a key path to carbon neutrality. The reverse water gas shift reaction (RWGS) has become a research hotspot in low-carbon conversion due to its ability to efficiently convert CO<sub>2</sub> into CO and thereby synthesize high-value fuels and chemicals. However, it faces bottlenecks such as high energy consumption and poor low-temperature selectivity, which restrict its industrial application. This article systematically reviews the latest progress of RWGS reaction in the resource utilization of CO<sub>2</sub>, focusing on reaction mechanism, optimization of catalytic system, reactor innovation and breakthroughs in integrated technology. In the design of catalytic systems, electronic structure regulation, interface and defect engineering significantly enhance the CO<sub>2</sub> conversion rate and product selectivity of thermal catalysis, photocatalysis and other systems. The reactor innovation breaks the thermodynamic equilibrium, optimizes mass transfer and overcomes thermodynamic limitations. The CO<sub>2</sub> capture and conversion integrated technology, through the design of adsorption-catalytic dual-functional materials, couples capture and RWGS reactions, significantly reducing the separation energy consumption and transportation costs of traditional processes. Although there are still challenges in the stability of catalytic materials, adaptability to complex gas sources and large-scale application, in the future, focusing on the development of multifunctional materials, the coupling of clean energy and the analysis of dynamic reaction mechanisms will promote the practical application of RWGS technology in industrial carbon reduction.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100476"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Global carbon emissions continue to rise, and carbon capture and utilization technologies have become a key path to carbon neutrality. The reverse water gas shift reaction (RWGS) has become a research hotspot in low-carbon conversion due to its ability to efficiently convert CO2 into CO and thereby synthesize high-value fuels and chemicals. However, it faces bottlenecks such as high energy consumption and poor low-temperature selectivity, which restrict its industrial application. This article systematically reviews the latest progress of RWGS reaction in the resource utilization of CO2, focusing on reaction mechanism, optimization of catalytic system, reactor innovation and breakthroughs in integrated technology. In the design of catalytic systems, electronic structure regulation, interface and defect engineering significantly enhance the CO2 conversion rate and product selectivity of thermal catalysis, photocatalysis and other systems. The reactor innovation breaks the thermodynamic equilibrium, optimizes mass transfer and overcomes thermodynamic limitations. The CO2 capture and conversion integrated technology, through the design of adsorption-catalytic dual-functional materials, couples capture and RWGS reactions, significantly reducing the separation energy consumption and transportation costs of traditional processes. Although there are still challenges in the stability of catalytic materials, adaptability to complex gas sources and large-scale application, in the future, focusing on the development of multifunctional materials, the coupling of clean energy and the analysis of dynamic reaction mechanisms will promote the practical application of RWGS technology in industrial carbon reduction.