Mayank Gupta , Seyed Hasan Hajiabadi , Farnaz Aghabeyk , Yun Chen , Reinier van Noort , Mahmoud Khalifeh , Guang Ye
{"title":"了解一组分地聚合物暴露于二氧化碳中的微观结构变化,用于地质储碳应用-一项实验和数值研究","authors":"Mayank Gupta , Seyed Hasan Hajiabadi , Farnaz Aghabeyk , Yun Chen , Reinier van Noort , Mahmoud Khalifeh , Guang Ye","doi":"10.1016/j.ccst.2025.100466","DOIUrl":null,"url":null,"abstract":"<div><div>While ensuring the long-term integrity of wellbore sealants is critical for the success of geological carbon storage (GCS), the chemical degradation of conventional materials under CO₂-rich conditions remains a major challenge. This study investigates the carbonation behavior of a one-part granite-based geopolymer, integrating a novel pore-scale simulation framework with experimental validation. A new model, ReacSan, is developed to simulate CO₂ transport and carbonation reactions within the evolving microstructure of the geopolymer under GCS-relevant conditions. The framework incorporates CO₂ dissolution using the Redlich–Kwong equation of state, gel dissolution via transition state theory, ion transport using the Lattice Boltzmann Method, and chemical reactions through thermodynamic modeling. The model was validated through experiments exposing equivalent geopolymer samples to CO₂ under in-situ conditions. The experimentally observed rapid carbonation, leading to a decrease in pore fluid pH and the precipitation of CaCO₃ matched the numerical simulations well, demonstrating the ability of the novel ReacSan framework to capture both temporal and spatial variations in the microstructure and carbonation mechanisms of alkali-activated materials (AAMs) exposed to supercritical CO₂. Based on the demonstrated validity of the model, the model is capable of providing detailed predictions of carbonation progression of AAMs or any other sealants over longer time- and length-scales required to ensure long-term GCS integrity.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100466"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding microstructural changes of a one-part geopolymer exposed to CO2 for geological carbon storage application – An experimental and numerical investigation\",\"authors\":\"Mayank Gupta , Seyed Hasan Hajiabadi , Farnaz Aghabeyk , Yun Chen , Reinier van Noort , Mahmoud Khalifeh , Guang Ye\",\"doi\":\"10.1016/j.ccst.2025.100466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While ensuring the long-term integrity of wellbore sealants is critical for the success of geological carbon storage (GCS), the chemical degradation of conventional materials under CO₂-rich conditions remains a major challenge. This study investigates the carbonation behavior of a one-part granite-based geopolymer, integrating a novel pore-scale simulation framework with experimental validation. A new model, ReacSan, is developed to simulate CO₂ transport and carbonation reactions within the evolving microstructure of the geopolymer under GCS-relevant conditions. The framework incorporates CO₂ dissolution using the Redlich–Kwong equation of state, gel dissolution via transition state theory, ion transport using the Lattice Boltzmann Method, and chemical reactions through thermodynamic modeling. The model was validated through experiments exposing equivalent geopolymer samples to CO₂ under in-situ conditions. The experimentally observed rapid carbonation, leading to a decrease in pore fluid pH and the precipitation of CaCO₃ matched the numerical simulations well, demonstrating the ability of the novel ReacSan framework to capture both temporal and spatial variations in the microstructure and carbonation mechanisms of alkali-activated materials (AAMs) exposed to supercritical CO₂. Based on the demonstrated validity of the model, the model is capable of providing detailed predictions of carbonation progression of AAMs or any other sealants over longer time- and length-scales required to ensure long-term GCS integrity.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding microstructural changes of a one-part geopolymer exposed to CO2 for geological carbon storage application – An experimental and numerical investigation
While ensuring the long-term integrity of wellbore sealants is critical for the success of geological carbon storage (GCS), the chemical degradation of conventional materials under CO₂-rich conditions remains a major challenge. This study investigates the carbonation behavior of a one-part granite-based geopolymer, integrating a novel pore-scale simulation framework with experimental validation. A new model, ReacSan, is developed to simulate CO₂ transport and carbonation reactions within the evolving microstructure of the geopolymer under GCS-relevant conditions. The framework incorporates CO₂ dissolution using the Redlich–Kwong equation of state, gel dissolution via transition state theory, ion transport using the Lattice Boltzmann Method, and chemical reactions through thermodynamic modeling. The model was validated through experiments exposing equivalent geopolymer samples to CO₂ under in-situ conditions. The experimentally observed rapid carbonation, leading to a decrease in pore fluid pH and the precipitation of CaCO₃ matched the numerical simulations well, demonstrating the ability of the novel ReacSan framework to capture both temporal and spatial variations in the microstructure and carbonation mechanisms of alkali-activated materials (AAMs) exposed to supercritical CO₂. Based on the demonstrated validity of the model, the model is capable of providing detailed predictions of carbonation progression of AAMs or any other sealants over longer time- and length-scales required to ensure long-term GCS integrity.