Multiscale investigation of metal substitution and diffusion mechanisms for enhanced CO2 adsorption: A case study of SIFSIX-3-Cu MOFs

Dehao Kong , Ning Yang , Yuheng Chuai , Shiwang Gao , Zhenyu Liu , Jin Xuan , Lei Xing
{"title":"Multiscale investigation of metal substitution and diffusion mechanisms for enhanced CO2 adsorption: A case study of SIFSIX-3-Cu MOFs","authors":"Dehao Kong ,&nbsp;Ning Yang ,&nbsp;Yuheng Chuai ,&nbsp;Shiwang Gao ,&nbsp;Zhenyu Liu ,&nbsp;Jin Xuan ,&nbsp;Lei Xing","doi":"10.1016/j.ccst.2025.100464","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon capture through adsorption is acknowledged as a promising engineering solution, notable for its low energy consumption, high controllability, and compatibility with renewable energy sources. Metal-organic frameworks (MOFs) have gained significant attention as sorbents for low-energy CO<sub>2</sub> separation from flue gases. In this study, we conducted molecular dynamics (MD) simulations to study the charge distribution of atoms in SIFSIX-3-M (where <em>M</em> = Ni, Co, Cu, Zn, Fe) with various pore parameters. Results indicated that SIFSIX-3-Cu possesses a large van der Waals surface and improved accessible solvent surface, suggesting the enhanced gas adsorption capabilities. Further analysis of the charge distribution and differential density maps for CO<sub>2</sub> adsorption revealed that the primary adsorption site for CO<sub>2</sub> within the pore is largely influenced by the strong interactions with the fluorine atoms in the framework. By calculating the radial distribution function (RDF) of the carbon atoms in CO<sub>2</sub> relative to the silicon atoms in SIFSIX-3-Cu, we observed a notably strong interaction between the carbon atoms and the neighboring fluorine atoms near the silicon atoms at 5.75 Å, that provides a critical binding site for CO<sub>2</sub> adsorption. Additionally, we employed computational fluid dynamics (CFD) simulations to study the breakthrough curves of N<sub>2</sub><sub><img></sub>CO<sub>2</sub> gas mixture passing through a porous packed bed constructed by SIFSIX-3-Cu. The results demonstrated effective separation of N<sub>2</sub> and CO<sub>2</sub>, highlighting the strong selectivity of SIFSIX-3-Cu for CO<sub>2</sub> adsorption. Moreover, SIFSIX-3-Cu exhibited excellent thermal stability, maintaining consistent CO<sub>2</sub> uptake across multiple temperature swing adsorption (TSA) cycles. This study provides a solid foundation for further optimization of the SIFSIX series MOFs for advanced carbon capture applications.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100464"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon capture through adsorption is acknowledged as a promising engineering solution, notable for its low energy consumption, high controllability, and compatibility with renewable energy sources. Metal-organic frameworks (MOFs) have gained significant attention as sorbents for low-energy CO2 separation from flue gases. In this study, we conducted molecular dynamics (MD) simulations to study the charge distribution of atoms in SIFSIX-3-M (where M = Ni, Co, Cu, Zn, Fe) with various pore parameters. Results indicated that SIFSIX-3-Cu possesses a large van der Waals surface and improved accessible solvent surface, suggesting the enhanced gas adsorption capabilities. Further analysis of the charge distribution and differential density maps for CO2 adsorption revealed that the primary adsorption site for CO2 within the pore is largely influenced by the strong interactions with the fluorine atoms in the framework. By calculating the radial distribution function (RDF) of the carbon atoms in CO2 relative to the silicon atoms in SIFSIX-3-Cu, we observed a notably strong interaction between the carbon atoms and the neighboring fluorine atoms near the silicon atoms at 5.75 Å, that provides a critical binding site for CO2 adsorption. Additionally, we employed computational fluid dynamics (CFD) simulations to study the breakthrough curves of N2CO2 gas mixture passing through a porous packed bed constructed by SIFSIX-3-Cu. The results demonstrated effective separation of N2 and CO2, highlighting the strong selectivity of SIFSIX-3-Cu for CO2 adsorption. Moreover, SIFSIX-3-Cu exhibited excellent thermal stability, maintaining consistent CO2 uptake across multiple temperature swing adsorption (TSA) cycles. This study provides a solid foundation for further optimization of the SIFSIX series MOFs for advanced carbon capture applications.
强化CO2吸附的金属取代和扩散机制的多尺度研究:以sif6 -3- cu mof为例
通过吸附法捕获碳被认为是一种很有前途的工程解决方案,以其低能耗、高可控性和与可再生能源的兼容性而闻名。金属-有机框架(MOFs)作为从烟气中分离低能耗CO2的吸附剂已受到广泛关注。在本研究中,我们通过分子动力学(MD)模拟研究了不同孔隙参数下sif6 -3-M (M = Ni, Co, Cu, Zn, Fe)中原子的电荷分布。结果表明,sif6 -3- cu具有较大的范德华表面和改善的可达溶剂表面,表明其气体吸附能力增强。对CO2吸附的电荷分布和差密度图的进一步分析表明,孔内CO2的主要吸附位点在很大程度上受骨架中氟原子的强相互作用的影响。通过计算sif6 -3- cu中碳原子相对于硅原子的径向分布函数(RDF),我们观察到碳原子与硅原子附近的氟原子之间在5.75 Å处存在明显的强相互作用,这为CO2吸附提供了一个关键的结合位点。此外,利用计算流体力学(CFD)模拟研究了N2CO2混合气体通过sif6 -3- cu构建的多孔充填床的突破曲线。结果表明,sif6 -3- cu对N2和CO2具有较强的吸附选择性。此外,sif6 -3- cu表现出优异的热稳定性,在多个变温吸附(TSA)循环中保持一致的CO2吸收。本研究为进一步优化SIFSIX系列MOFs,实现先进的碳捕集应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信