Understanding microstructural changes of a one-part geopolymer exposed to CO2 for geological carbon storage application – An experimental and numerical investigation

Mayank Gupta , Seyed Hasan Hajiabadi , Farnaz Aghabeyk , Yun Chen , Reinier van Noort , Mahmoud Khalifeh , Guang Ye
{"title":"Understanding microstructural changes of a one-part geopolymer exposed to CO2 for geological carbon storage application – An experimental and numerical investigation","authors":"Mayank Gupta ,&nbsp;Seyed Hasan Hajiabadi ,&nbsp;Farnaz Aghabeyk ,&nbsp;Yun Chen ,&nbsp;Reinier van Noort ,&nbsp;Mahmoud Khalifeh ,&nbsp;Guang Ye","doi":"10.1016/j.ccst.2025.100466","DOIUrl":null,"url":null,"abstract":"<div><div>While ensuring the long-term integrity of wellbore sealants is critical for the success of geological carbon storage (GCS), the chemical degradation of conventional materials under CO₂-rich conditions remains a major challenge. This study investigates the carbonation behavior of a one-part granite-based geopolymer, integrating a novel pore-scale simulation framework with experimental validation. A new model, ReacSan, is developed to simulate CO₂ transport and carbonation reactions within the evolving microstructure of the geopolymer under GCS-relevant conditions. The framework incorporates CO₂ dissolution using the Redlich–Kwong equation of state, gel dissolution via transition state theory, ion transport using the Lattice Boltzmann Method, and chemical reactions through thermodynamic modeling. The model was validated through experiments exposing equivalent geopolymer samples to CO₂ under in-situ conditions. The experimentally observed rapid carbonation, leading to a decrease in pore fluid pH and the precipitation of CaCO₃ matched the numerical simulations well, demonstrating the ability of the novel ReacSan framework to capture both temporal and spatial variations in the microstructure and carbonation mechanisms of alkali-activated materials (AAMs) exposed to supercritical CO₂. Based on the demonstrated validity of the model, the model is capable of providing detailed predictions of carbonation progression of AAMs or any other sealants over longer time- and length-scales required to ensure long-term GCS integrity.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100466"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While ensuring the long-term integrity of wellbore sealants is critical for the success of geological carbon storage (GCS), the chemical degradation of conventional materials under CO₂-rich conditions remains a major challenge. This study investigates the carbonation behavior of a one-part granite-based geopolymer, integrating a novel pore-scale simulation framework with experimental validation. A new model, ReacSan, is developed to simulate CO₂ transport and carbonation reactions within the evolving microstructure of the geopolymer under GCS-relevant conditions. The framework incorporates CO₂ dissolution using the Redlich–Kwong equation of state, gel dissolution via transition state theory, ion transport using the Lattice Boltzmann Method, and chemical reactions through thermodynamic modeling. The model was validated through experiments exposing equivalent geopolymer samples to CO₂ under in-situ conditions. The experimentally observed rapid carbonation, leading to a decrease in pore fluid pH and the precipitation of CaCO₃ matched the numerical simulations well, demonstrating the ability of the novel ReacSan framework to capture both temporal and spatial variations in the microstructure and carbonation mechanisms of alkali-activated materials (AAMs) exposed to supercritical CO₂. Based on the demonstrated validity of the model, the model is capable of providing detailed predictions of carbonation progression of AAMs or any other sealants over longer time- and length-scales required to ensure long-term GCS integrity.
了解一组分地聚合物暴露于二氧化碳中的微观结构变化,用于地质储碳应用-一项实验和数值研究
虽然确保井筒密封胶的长期完整性对于地质储碳(GCS)的成功至关重要,但在富含CO 2的条件下,常规材料的化学降解仍然是一个主要挑战。本研究研究了一种单组分花岗岩基地聚合物的碳化行为,将一种新颖的孔隙尺度模拟框架与实验验证相结合。开发了一个新的模型ReacSan,用于模拟gcs相关条件下地聚合物微观结构演变中的CO₂输运和碳化反应。该框架采用了Redlich-Kwong状态方程的CO₂溶解,过渡态理论的凝胶溶解,晶格玻尔兹曼方法的离子输运以及热力学建模的化学反应。通过将等效地聚合物样品在原位条件下暴露于CO₂中的实验,验证了该模型的有效性。实验观察到的快速碳酸化导致孔隙流体pH值的降低和CaCO₃的沉淀与数值模拟相吻合,证明了新型ReacSan框架能够捕捉超临界CO₂作用下碱活化材料(AAMs)的微观结构和碳酸化机制的时空变化。基于该模型的有效性,该模型能够在更长的时间和长度尺度上提供AAMs或任何其他密封剂碳酸化进程的详细预测,以确保长期GCS的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信